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Abstract

This thesis addresses the challenge of improving the interpretability of neural networks in Natural Language

Processing (NLP), particularly in the context of quality estimation (QE) for machine translation. Current NLP

models are hindered by their dependence on over-parameterized black boxes, raising concerns about their relia-

bility, confidence, and fairness. While several explainability approaches have been proposed for shedding light

into neural networks’ decisions, ranging from built-in (e.g., attention mechanisms) to post-hoc methods (e.g.,

gradient-based measures), their evaluation often sidesteps the crucial aspect of effectively communicating the

underlying model behavior to humans. In this thesis, we propose the development of frameworks to automat-

ically evaluate explainability methods in terms of forward and counterfactual simulability—the ability to use

explanations for predicting model outputs on unseen examples. We also design an interpretable and more effi-

cient complement to the multi-head attention mechanism found in transformers, the backbone of state-of-the-art

QE models. Moreover, we provide empirical evaluations of the plausibility of various explainability methods for

QE, and design new explainability methods for interpreting transformed-based QE models, employing sparsity

as key interpretability driver. Our findings reveal that simulability is a valuable tool for evaluating explainability

methods under a single perspective, as well as for designing more plausible and robust explainers, while sparsity

is a useful feature for improving the interpretability of transformer-based models. In particular, our empirical

evaluations reveal that attention-based methods often outperform other approaches for explaining QE models,

and that sparsity can be effectively leveraged to identify relevant internal components, such as attention heads,

and to determine influential input words. Furthermore, we demonstrate that sparse signals not only serve to

guide the design of efficient attention mechanisms, but also offer valuable information for counterfactual gen-

eration. Our successful strategies led to winning submissions in two consecutive editions of the Explainable

Quality Estimation Shared Task, in 2021 and 2022, further highlighting the relevance and effectiveness of our

approaches. By improving the interpretability of neural networks along these dimensions, this thesis contributes

to the development of more transparent, efficient, and understandable systems. Finally, to foster future research

in this area, we have made our code open-source and publicly available.

Keywords: Machine learning, natural language processing, explainability, sparsity, translation quality esti-

mation.
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Resumo

Esta tese aborda o desafio de melhorar a interpretabilidade de redes neurais em Processamento de Lingua-

gem Natural (NLP, do inglês Natural Language Processing), particularmente no contexto de estimativa de qua-

lidade (QE, do inglês Quality Estimation) para tradução automática. Os modelos atuais de PNL são limitados

por sua dependência de caixas pretas superparametrizadas, levantando preocupações sobre sua confiabilidade,

confiança e imparcialidade. Embora várias abordagens de explicabilidade tenham sido propostas para esclarecer

as decisões das redes neurais, variando de métodos embutidos (e.g., mecanismos de atenção) a métodos post-

hoc (e.g., medidas baseadas em gradiente), sua avaliação muitas vezes evita o aspecto crucial de efetivamente

comunicar o comportamento subjacente do modelo para humanos. Nesta tese, propomos o desenvolvimento

de frameworks para avaliar automaticamente os métodos de explicabilidade em termos de simulabilidade di-

reta e contrafactual —a capacidade de usar explicações para prever saídas de modelos em novos exemplos.

Também projetamos um complemento interpretável e mais eficiente para o mecanismo de atenção multicabeças

encontrado em transformadores, a espinha dorsal dos modelos QE de última geração. Além disso, fornecemos

avaliações empíricas da plausibilidade de vários métodos de explicabilidade para QE e projetamos novos mé-

todos de explicabilidade para interpretar modelos de QE baseados em transformação, empregando esparsidade

como a principal guia de interpretabilidade. Nossas descobertas revelam que a simulabilidade é uma ferramenta

valiosa para avaliar métodos de explicabilidade sob uma única perspectiva, bem como para projetar explicado-

res mais plausíveis e robustos, enquanto a esparsidade é um recurso útil para melhorar a interpretabilidade de

modelos baseados em transformadores. Em particular, nossas avaliações empíricas revelam que os métodos ba-

seados em atenção geralmente superam outras abordagens para explicar os modelos de QE e que a esparsidade

pode ser efetivamente aproveitada para identificar componentes internos relevantes, como cabeças de atenção,

e para determinar palavras de entrada influentes. Além disso, demonstramos que sinais esparsos não servem

apenas para orientar o design de mecanismos de atenção eficientes, mas também oferecem informações valiosas

para a geração de textos contrafactuais. Nossas estratégias bem-sucedidas levaram a submissões vencedoras em

duas edições consecutivas da Explainable QE Shared Task, em 2021 e 2022, destacando ainda mais a relevância

e a eficácia de nossas abordagens. Ao melhorar a interpretabilidade de redes neurais ao longo dessas dimensões,

esta tese contribui para o desenvolvimento de sistemas mais transparentes, eficientes e compreensíveis. Por fim,

para fomentar pesquisas futuras nessa área, tornamos nosso código aberto e disponível ao público.

Palavras-chave: Aprendizado de máquina, processamento de linguagem natural, explicabilidade, esparsidade,

estimativa de qualidade de tradução.
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Notation

a, a, A, and A a scalar, a vector, a matrix, and a set, respectively;
vi the ith element of vector v;

wij the element on the ith row and jth column of W ;
△K the canonical simplex, i.e., {ξ ∈ RK : ⟨1, ξ⟩ = 1, ξ ≥ 0};

HS(p) the Shannon’s entropy of a distribution p(z), i.e., −
∑

i pi log pi;
KL [p||q] the Kullback-Leibler divergence of p(z) from q(z);

∥z∥0 := |{t : zt ̸= 0}| the number of non-zeros of a vector z;
Ep(z)[f(z)] the expectation of a function f : Z → R under distribution p(z), letting z ∈ Z be

a random variable;
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Durante minha viagem ao peru , ex-
perimentei um copo de suco de manga
e fiquei com muita dor de cabeça .

During my trip to turkey , I tried a
glass of sleeve juice and got a really
bad head pain .

sentence-level QE word-level QE

0.58 OK OK OK OK BAD ...

(Source – Portuguese) (Translation – English)

quality score quality tags

Figure 1.1: Overview of sentence and word-level QE tasks. The goal of sentence-level QE is to estimate the quality of the
whole translated sentence, while word-level QE aims at tagging individual words with quality labels (e.g., OK or BAD).

The widespread accessibility of the Web has significantly amplified the volume of multilingual user-generated

content, creating an increasing demand for high-quality translations to understand the world. For example,

Google Translate, one of the most popular translation apps, is currently installed in more than 1 billion smart-

phones, supporting the translation of texts in over 100 languages.1 As a result of this high demand, there has

been an increased emphasis on assessing the quality of translations. The task of quality estimation (QE), illus-

trated in Figure 1.1, addresses this need by providing an estimate of how reliable is an automatically generated

translation (Specia et al., 2015), possibly pinpointing words mistranslated in the process.

Following the trend of employing neural-based methods in machine translation (MT), QE systems based on

neural networks have become more prominent, allowing automatic translation tools to be more helpful in several

academic and industrial applications (Johnson et al., 2017; Graça, 2018; Specia et al., 2018). Underpinning the

success of neural-based systems is the attention mechanism, which allows the model to focus on different

parts of the input sentence when making a decision (Bahdanau et al., 2015). Current QE models are based

on the transformer architecture (Vaswani et al., 2017; Junczys-Dowmunt et al., 2018; Ott et al., 2018; Kepler

et al., 2019a; Ranasinghe et al., 2020), composed of a stack of attention layers responsible for contextualizing

information within and across inputs dynamically. Due to their outstanding performance and parallelizable

training regime, large transformers have become the backbone of top submission systems in both WMT-MT

and WMT-QE shared tasks (Barrault et al., 2019; Specia et al., 2020).

Despite their effectiveness, neural-based models are considered black-boxes, meaning that they are not

amenable to human interpretation. This characteristic has raised concerns about their reliability, confidence, and

fairness (Doshi-Velez and Kim, 2017; Lipton, 2018; Rudin, 2019). To address this issue, several explainability

approaches have been proposed for shedding light into neural networks decisions, ranging from built-in (e.g.,

attention mechanisms) to post-hoc methods (e.g., gradient-based measures). These approaches are usually

assessed with human-likeness comparisons or faithfulness proxies when explaining shallow models trained on

monolingual text classification datasets (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019; DeYoung et al.,

2020). However, relying solely on these evaluation methods may not be sufficient, as they might not fully

communicate the model’s behavior to humans (Miller, 2019).

In this thesis, we start by investigating and comparing explainability approaches along new interpretability

dimensions, such as forward and counterfactual simulability. Then, we shift our focus to the multilingual task

1https://blog.google/products/translate/one-billion-installs/
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of QE and propose novel explainability approaches tailored for transformers. Our winning submissions for the

Explainable QE shared tasks 2021 and 2022 employ these approaches (Fomicheva et al., 2021; Zerva et al.,

2022), building on the findings from the earlier parts of our investigation.

At the start of this project, in 2019, many explainability methods have been proposed to justify neural

networks’ decisions in Natural Language Processing (NLP). Among them, a popular approach was to inspect

the weights in the attention mechanism to interpret the model’s decision (Cho et al., 2014b; Luong et al., 2015;

Junczys-Dowmunt et al., 2018; Peters et al., 2018a). However, a series of impactful works have questioned

the interpretability claims of attention mechanisms, including Jain and Wallace (2019) and Serrano and Smith

(2019), who showed that attention weights do not correlate with traditional gradient-based and leave-one-out

methods, and that it is easy to find adversarial attention explanations for the same model’s decision, raising

concerns that attention weights may not always be a fail-safe explainability measure. Wiegreffe and Pinter

(2019) probe the previous works and advocate the notion of faithful explanations to determine explanations that

capture the true reasoning process that leads to the model’s decision, concluding that attention weights may

provide a plausible but not always faithful explanation. However, defining and assessing faithfulness remain

open questions, as definitions may require causal assumptions and evaluation outcomes are often task-dependent

(Jacovi and Goldberg, 2020; Grimsley et al., 2020; Bastings et al., 2022).

The debate regarding attention explainability in NLP reveals the difficulty in evaluating explainability meth-

ods. On the one hand, it is unreasonable to expect that explainability methods should behave similarly to each

other, as none of them provide ground-truth measures (Neely et al., 2021). On the other hand, while some works

evaluate explanations with plausibility ratings (Lei et al., 2016; Camburu et al., 2018), or with faithfulness prox-

ies such as sufficiency and comprehensiveness (DeYoung et al., 2020; Carton et al., 2020), these measures offer a

limited view of explainability, sidestepping an important goal of explainability: the ability to communicate the

underlying model behavior to humans (Treviso and Martins, 2020; Hase and Bansal, 2020; Pruthi et al., 2022).

In this thesis, we take a first step to address this issue. Concretely, we first develop communication-based frame-

works for assessing explanations on the dimensions of forward and counterfactual simulability (Doshi-Velez and

Kim, 2017).2 Later, we leverage these frameworks to also design new interpretability methods based on selec-

tive, sparse attention approaches. As we will see in future chapters, our findings show that sparse attention

is not only more informative than gradient and erasure-based methods along both plausibility and simulability

dimensions (§3), but can also be exploited for guiding the generation of counterfactuals (§4) and improving

inference efficiency in transformers (§5).

Furthermore, at the time this project started, most works analyzed attention explanations on monolingual

text classification using shallow neural networks, such as recurrent neural networks (RNNs) equipped with a

single attention mechanism. In contrast, more structured tasks such as QE were unexplored, and deeper models

based on pretrained transformers composed of multiple attention heads, such as BERT (Devlin et al., 2019),

XLM (Conneau and Lample, 2019), and T5 (Raffel et al., 2020) were becoming popular and feasible to use

in practice. In this thesis, we study and design explainability methods for interpreting QE models based on

pretrained transformers, and as we will see, besides outperforming other methods in terms of plausibility (§6

and §7), attention-based approaches can be easily combined with sparse transformations to optimize simulability
2Simulability refers to the degree of informativeness in an explanation when it is presented to a human, who is then asked to predict the

outcome of the classifier—“simulating” the underlying model behavior in the process.
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and automatically identify relevant attention heads (§8).

Many works laid out the foundation of this thesis. In particular, Doshi-Velez and Kim (2017) provided the

essential motivation to design simulability frameworks to automatically assess explainability methods. We also

build upon a line of research that aims to interpret neural networks using sparsity, including the use of sparse

normalized transformations (Martins and Astudillo, 2016; Niculae and Blondel, 2017; Peters et al., 2019) and

their application to transformers (Correia et al., 2019), which we explore to design novel explainability methods

and improve attention efficiency. Finally, our idea to interpret QE models is largely due to previous work that

established human-annotated data as a reliable source of ground-truth for explainability (Fomicheva et al., 2020,

2022a), which we use to systematically compare different approaches and propose sparsity-based solutions.

1.1 Contributions and Thesis Statement

We now summarize the main contributions of this thesis.

• We create a framework to automatically evaluate explainability methods in terms of forward simulability,

as defined by Doshi-Velez and Kim (2017) with human participants. We further exploit this framework

to design a new approach that maximize simulability by leveraging sparse attention (§3).

• We incorporate learnable sparse signals to guide the generation of synthetic counterfactuals using masked

language models, enabling the design of more robust explainers. Equipped with a counterfactual gen-

erator, we propose an automatic approach to evaluate explainability methods based on counterfactual

simulability (§4).

• We design an efficient and interpretable complement to the multi-head attention mechanism found in

transformers. Specifically, we train a small model (student) to predict, a priori, the sparse attention

pattern of a large model (teacher) for a given input, effectively reducing computation time (§5).

• We provide an empirical evaluation of the plausibility of several explainability methods for QE, including

gradient, erasure, and attention-based approaches (§6). Further on, we leverage previous findings and

insights to design more plausible and practical explainers based on sparsity (§7).

• We investigate the extent to which an explainability method can learn to produce better explanations for

QE. To achieve this, we design a differentiable attention explainer that maximizes forward simulability,

allowing us to use sparsity to identify important attention heads in transformers (§8).

Thesis Statement. The main claim of this thesis is that simulability and sparsity do have the ability to improve

the interpretability of neural networks: we find that sparsity can be a key ingredient for improving the explain-

ability of neural models, and that simulability is not only helpful for evaluating explainability methods, but can

also be exploited to design more plausible and robust explainers. Through rigorous empirical evaluations, we

also find that attention solutions often outperform other approaches for explaining QE models, and that sparsity

can act as a guide to identify relevant inner components of the model, such as attention heads.
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1.2 Publications

During the course of this Ph.D., I have co-authored the following works, some of which will be covered in

this thesis (marked with references to their respective chapters):

• OpenKiwi: An open source framework for quality estimation (Kepler et al., 2019b). Accepted at ACL

2019. This paper won the best demo paper award. Not included in this thesis.

• Unbabel’s Participation in the WMT19 Translation Quality Estimation Shared Task (Kepler et al.,

2019a). Accepted at WMT 2019, co-allocated with ACL 2019. This paper won the Shared Task for word,

sentence, and document-level. Not included in this thesis.

• The Explanation Game: Towards Prediction Explainability through Sparse Communication (Tre-

viso and Martins, 2020). Accepted at the BlackBoxNLP workshop, co-allocated with EMNLP 2020.

Described in §3.

• Sparse and Continuous Attention Mechanisms (Martins et al., 2020). Accepted for spotlight presenta-

tion at NeurIPS 2020. Not included in this thesis.

• IST-Unbabel 2021 Submission for the Explainable Quality Estimation Shared Task (Treviso et al.,

2021). Accepted at the Eval4NLP workshop, co-allocated with EMNLP 2021. This paper won the

unconstrained track of the Shared Task and the Best Explainability Approach Award. Described in §6.

• Predicting Attention Sparsity in Transformers (Treviso et al., 2022). Accepted at the SPNLP work-

shop, co-allocated with ACL 2022. Described in §5.

• CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task (Rei et al.,

2022b). Accepted at WMT 2022, co-allocated with EMNLP 2022. This paper won the QE and Ex-

plainable QE tracks of the Shared Task. Only my part of the collaboration will be covered in this thesis.

Described in §7.

• Learning to Scaffold: Optimizing Model Explanations for Teaching (Fernandes et al., 2022). Ac-

cepted at NeurIPS 2022. This paper was co-led with Patrick Fernandes, and only my part of the collabo-

ration will be covered in this thesis. Described in §8.

• Sparse Continuous Distributions and Fenchel-Young Losses (Martins et al., 2022). Accepted at JMLR

2022. Not included in this thesis.

• CREST: A Joint Framework for Rationalization and Counterfactual Text Generation (Treviso et al.,

2023b). Accepted at ACL 2023. Described in §4.

• The Inside Story: Towards Better Understanding of Machine Translation Neural Evaluation Met-

rics (Rei et al., 2023). Accepted at ACL 2023. Not included in this thesis.

• Efficient Methods for Natural Language Processing: A Survey (Treviso et al., 2023a). Accepted at

TACL 2023. Not included in this thesis.
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Explainability

The Explanation Game: Pre-
diction Explainability through
Sparse Communication (§3)

BlackBoxNLP 2020

IST-Unbabel 2021 Submission
for the Explainable Quality
Estimation Shared Task (§6)

Eval4NLP 2021

CometKiwi: IST-Unbabel 2022
Submission for the Quality

Estimation Shared Task (§7)
WMT 2022

Sparsefinder: Predict-
ing Attention Sparsity
in Transformers (§5)

SPNLP 2022

Learning to Scaffold: Optimizing
Model Explanations for Teaching (§8)

NeurIPS 2022

CREST: A Joint Framework for
Rationalization and Counter-
factual Text Generation (§4)

ACL 2023

Figure 1.2: Schematic overview of the works covered in this thesis, covering explainability with selective sparse methods
( in blue ), and explainability applied to QE ( in orange ).

1.3 Thesis Roadmap

Herein, we show the outline of this thesis, which we divide into two parts: in the first part we explore selec-

tive sparsity for explainability in NLP, and in the second part we specifically change our focus to explainable

QE. Figure 1.2 depicts the connections between the works covered in this thesis.

Chapter 2: Background. We provide a succinct overview of the theoretical foundation for this thesis, de-

scribing key concepts used in our neural models, such as the encoder-decoder architecture, sparse attention

mechanisms, and transformers. We also provide high-level definitions for sentence and word-level QE, along-

side key explainability notions employed throughout this thesis, such as popular explainability methods and

evaluation metrics.

Chapter 3: The Explanation Game: Prediction Explainability through Sparse Communication. We

propose a simulability framework that provides an unique perspective of explainability as a communication

problem, which we use to compare several approaches and design a new post-hoc method that is trained to

optimize the communication.

Chapter 4: CREST: A Joint Framework for Rationalization and Counterfactual Text Generation. We

propose a joint framework for selective rationalization and counterfactual text generation, and further leverage

its ability to synthesize counterfactuals to assess counterfactual simulability.

Chapter 5: Sparsefinder: Predicting Attention Sparsity in Transformers. We study model efficiency of

transformer architectures via the tradeoff between the sparsity and recall of the predicted attention graph, and

propose Sparsefinder, a model that preemptively identifies sparse attention patterns to reduce computational

costs without abdicating interpretability.

Chapter 6: An Empirical Comparison of Explainability Methods for Quality Estimation. We present

the joint contribution of IST and Unbabel to the Eval4NLP 2021 Explainable Quality Estimation Shared Task,

6



where we propose to use attention heads information to explain accurate QE models on two settings: constrained

(without word-level supervision) and unconstrained (with word-level supervision).

Chapter 7: Sparse Bottleneck Layer for Explainable Quality Estimation. We present the joint contribution

of IST and Unbabel to the Explainable track of the WMT 2022 Shared Task on Quality Estimation, where we

further complement attention heads with gradient information, and propose a sparse selection mechanism to

automatically identify well-performing attention heads.

Chapter 8: Learning to Scaffold: Optimizing Model Explanations for Quality Estimation. Given a

trained transformer-based model finetuned on QE, we propose a parameterized sparse attention-based explainer

that is trained to optimize simulability and identify relevant attention heads in a post-hoc manner.

Chapter 9: Conclusions. We summarize the main contributions, outline the existent limitations, and discuss

promising future directions linked to this thesis.
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2.1 Sequence-to-Sequence Models

Considerable progress has been made in machine translation (MT) in recent times fostered on the break-

through of deep learning. Modern approaches have switched from statistical-based machine translation (SMT)

to neural-based machine translation (NMT), which rely on the rich parameterization enabled by deep neural

networks to transform the source sentence into the target sentence in an end-to-end fashion (Sutskever et al.,

2014; Cho et al., 2014b). In this section, we introduce the key concepts employed in modern NMT and QE

models adopted in this thesis: the encoder-decoder architecture, the attention mechanism, and the transformer

architecture (Vaswani et al., 2017).

2.1.1 Encoder-Decoder Architecture

The goal of a sequence-to-sequence (seq2seq) model is to generate a target sequence of symbols y from a

source sequence x, which is usually modeled as a conditional distribution pθ(y | x) parameterized by θ. Most

sequence-to-sequence models are parameterized with an encoder-decoder architecture, which consists of the

following blocks:

• The encoder, which receives a source sequence x = ⟨x1, ..., xn⟩ as input and produces hidden represen-

tations H = ⟨h1, ...,hn⟩ for each input word xi.

• The decoder, which uses the encoder’s hidden representations as contextual information to generate a

variable-length target sequence y = ⟨y1, ..., ym⟩.

In the remainder of this section, we describe in more detail the attention mechanism commonly employed

in encoder-decoder architectures.

2.1.2 Attention Mechanisms

In early seq2seq models, the encoder summarizes the entire input into a fixed vector representation c, called

contextual vector, which, in turn, is used by the decoder to generate an output sequence. However, a fixed

contextual vector creates a bottleneck since a fixed representation “does not have enough capacity to encode

a long sentence with complicated structure and meaning” (Cho et al., 2014a). This problem is mitigated by

attention mechanisms (Bahdanau et al., 2015), which automatically focus on important hidden states hi to

create a contextual vector cj at each time-step j. More formally, at each time-step j, the decoder’s hidden

state qj and the encoder’s hidden states hi are used to compute attention scores zi = f(qj ,hi), where f is

a vector-valued function that might be parameterized by learnable weights W , such as f(qj ,hi) = q⊤
j Whi.

The vector z ∈ Rn is then used to compute the contextual vector cj via a weighted average of the encoder’s

hidden states:

cj =

n∑
i=1

π(z)ihi, (2.1)

where π : Rn → △n is a function that maps scores to probabilities, and △n := {p ∈ Rn | p ≥ 0, 1⊤p = 1}

is the (n− 1)-probability simplex. The most common choice for π(·) is the softmax transformation:

softmax(z)j =
exp(zj)∑
j′ exp(zj′)

. (2.2)
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Softmax is a dense transformation, i.e., it places some probability mass to every jth input, even if small. How-

ever, we can also consider π(·) transformations with other desirable properties, such as sparsity.

Sparse attention. A natural way to get a sparse attention distribution is by using the sparsemax transfor-

mation (Martins and Astudillo, 2016), which computes an Euclidean projection of the score vector onto the

probability simplex △n, or, more generally, the α-entmax transformation (Peters et al., 2019):

α-entmax(z) := argmax
p∈△n

p⊤z + HT
α(p), (2.3)

where HT
α is a generalization of the Shannon and Gini entropies proposed by Tsallis (1988), parametrized by a

scalar α ≥ 1:

HT
α(p) :=

{
1

α(α−1)

∑
j(pj − pαj ), α ̸= 1

HS(p), α = 1,
(2.4)

where HS(p) := −
∑

j pj log pj is the Shannon entropy. To use the α-entmax transformation, we need to solve

the maximization in Equation 2.3, i.e., obtain p⋆ = α-entmax(z) for a given vector of scores z. The solution is

given in the following form (Peters et al., 2019):

α-entmax(z) = [(α− 1)z − τ(z)1]
1/α−1

+ , (2.5)

where [·]+ is the positive part (ReLU) function, and τ : Rn → R is a normalizing function that satisfies∑
j [(α− 1)zj − τ(z)]

1/α−1

+ = 1 for any z. That is, entries with score zj ≤ τ(z)/α−1 get exact zero probability.

In the limit α → 1, α-entmax recovers the softmax function, while for any value of α > 1 this transformation

can return sparse probability vectors (as the value of α increases, the induced probability distribution becomes

more sparse). In particular, letting α = 2 we recover sparsemax.

In this thesis, we often use attention weights π(z)i as an explainability score for the ith input token. For

example, we evaluate dense (softmax) and sparse (sparsemax and 1.5-entmax) attention methods with a simu-

lability framework in Chapter 3.

2.1.3 Transformers

Traditionally, both the encoder and the decoder in seq2seq models were built using gated recurrent net-

works, such as long short-term memory units (LSTM, Hochreiter and Schmidhuber 1997) or gated recurrent

units (GRU, Cho et al. 2014b). Recent NMT systems use transformers, an architecture that avoids recurrences

by stacking self-attention layers to contextualize information within and across input sentences dynamically

(Vaswani et al., 2017). In contrast to recurrent networks, self-attention layers only require matrix multiplica-

tions, allowing parallelizable computations across time steps on modern hardware during training.

The main component of transformers is the multi-head attention mechanism. Concretely, given as input a

matrix Q ∈ Rm×d containing d-dimensional representations for m queries, and matrices K,V ∈ Rn×d for n

keys and values, the scaled dot-product attention at a single head is computed as:

att(Q,K,V ) = π

(
QK⊤
√
d

)
︸ ︷︷ ︸
Z∈Rm×n

V ∈ Rm×d. (2.6)
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The π transformation maps rows to distributions, with softmax being the most common choice, π(Z)ij =

softmax(zi)j . Multi-head attention is computed by evoking Eq. 2.6 in parallel for each head h:

hh = att(QWQ
h ,KWK

h ,V W V
h ), (2.7)

where WQ
h , WK

h , W V
h are learnable linear transformations. The output of the multi-head attention module at

the ℓth layer is a set of hidden states Hℓ ∈ Rm×d formed via the concatenation of all hℓ,1, ...,hℓ,H heads in

that layer followed by a learnable linear transformation WO:

Hℓ = concat(hℓ,1, ...,hℓ,H)WO. (2.8)

These hidden states are further refined through position-wise feed-forward blocks and residual connections

to obtain a final representation: H̃ℓ = FFN(Hℓ) +Hℓ. Thanks to the application of different learnable linear

transformations, distinct attention heads have the capability of learning specialized phenomena.

Importantly, transformers have three types of multi-head attention mechanism: encoder self-attention (source-

to-source), decoder self-attention (target-to-target), decoder cross-attention (target-to-source). While there are

no restrictions to over which elements are attended in the encoder, elements in position j > i in the decoder

self-attention are masked at time-step i (“causal mask”). Transformers with only encoder-blocks, such as BERT

(Devlin et al., 2019) and XLM (Conneau et al., 2020), have only the encoder self-attention, and thus m = n.

In several chapters of this thesis, we employ pretrained transformers as the backbone of our models and use

attention weights A = π(Z) ∈ Rm×n as interpretability indicators, where each ith row Ai ∈ △n. In Chapter 5

we study attention heads trained with α-entmax. In Chapters 6 and 7 we investigate the explainability power of

independent attention heads on the task of QE. In addition, in Chapter 8 we design a new explainability method

based on a sparse parameterization of attention heads using the sparsemax transformation.

2.2 Quality Estimation

Quality estimation (QE) is the task of evaluating a translation system’s quality without access to reference

translations (Blatz et al., 2004; Specia et al., 2018). Among its potential usages are: informing an end user about

the reliability of automatically translated content; deciding if a translation is ready for publishing or if it requires

human post-editing; and highlighting the words that need to be post-edited. QE systems are usually framed

according to the granularity in which predictions are made, such as sentence or word-level,1 We illustrate the

tasks of sentence and word-level QE in Figure 1.1. In this section, we describe the main concepts to formulate

and evaluate sentence and word-level QE tasks, which we will explore later in the second part of this thesis (in

Chapters 6, 7, and 8).

Sentence-level. The goal of sentence-level QE is to predict the quality of the whole translated sentence, either

in terms of how many edit operations are required to fix it (Human Translation Error Rate, HTER, Snover et al.

2006), in terms of direct assessments (DA, Graham et al. 2013) obtained via human judgments, or more recently

in terms of a finegrained annotation schema known as Multidimensional Quality Metrics (MQM, Lommel et al.

2014; Zerva et al. 2022), in which translation errors are annotated with severity (minor, major, critical) and type

1QE can be framed in a phrase or document-level format when assessing the translation quality of phrases or documents, respectively.
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(omission, style, mistranslation, etc) markers. Sentence-level QE can be cast as a regression problem, where

a source s = ⟨s1, ..., sn⟩ and a translation sequence t = ⟨t1, ..., tm⟩ are given as input to a model, which

predicts a single score ŷ ∈ R that represents an estimate of the translation quality. Since sentence-level systems

usually predict a continuous score, regression-based metrics such as Mean Absolute Error (MAE), Pearson’s

correlation, and Spearman’s rank correlation are usually used for evaluation (Fonseca et al., 2019; Specia et al.,

2020; Zerva et al., 2022).

Word-level. Word-level QE aims at assigning quality labels (e.g., OK or BAD) to individual words. More

precisely, models should assign a label to each machine-translated word, indicating whether that word is a

translation error or not. Additionally, current systems can also classify source words, to denote words in the

source sequence that have been mistranslated or omitted in the target, and machine-translated gaps, to account

for context words that need to be inserted. Word-level QE can be cast as a sequence labelling problem, where

the translation sequence t = ⟨t1, ..., tm⟩ is augmented with NULL tokens ∅ at each position 1 ≤ i ≤ m + 1 to

account for gap labels t+ = ⟨∅, t1, ∅, t2, ..., ∅, tm, ∅⟩. That is, models should predict a label ŷ(t)i ∈ Y for each

ith token in t+, and a label ŷ(s)i ∈ Y for each ith token in s = ⟨s1, ..., sn⟩, where Y represents the label set.

To avoid favoring pessimistic (always predict BAD tags) and optimistic (always predict OK tags) predictions,

word-level QE models are evaluated using F1-MULT, which is calculated via the product of the F1 score for

the BAD class with the F1 score for the OK class. Recent editions of the WMT QE shared task started to use

Matthews correlation coefficient (MCC) as the primary metric to evaluate word-level QE systems since it is

unaffected by class unbalance (Fonseca et al., 2019; Specia et al., 2020; Zerva et al., 2022).

2.3 Explainability for NLP

The widespread use of machine learning systems to assist humans in decision making brings the need for

providing interpretations for models’ predictions (Lipton, 2018; Doshi-Velez and Kim, 2017; Rudin, 2019;

Miller, 2019). This poses a challenge in NLP, where current systems are based on deep neural networks that

generally lack transparency (Goldberg and Hirst, 2017; Peters et al., 2018b; Devlin et al., 2019). The goal of

explainability is to provide additional information that helps to unravel why a prediction was made in a certain

way, depending on the application at hand and on the social attributions related to it (Miller, 2019; Jacovi

and Goldberg, 2021). In this section, we cover the main explainability methods and evaluation setups that are

commonly explored in the NLP literature and that are relevant for this thesis.

2.3.1 Methods

From the model’s perspective, we can have different types of explanations depending on the task at hand

and on the explanation method used. For instance, when recognizing objects from an image, it is common to

select pixels or regions of the image as part of the explanation (Ribeiro et al., 2016; Montavon et al., 2018). In

NLP, the notion of rationales that support the model’s decision is commonly applied. For instance, Lei et al.

(2016); Bastings et al. (2019) define a rationale, or highlights, as “a short yet sufficient part of the input text”.

Next, we describe existing approaches to generate highlights explanations.
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Gradient-based methods. Given a differentiable model f that predicts y = f(x1:n) ∈ Y for a sequence of

n input vectors, where xi ∈ Rd is the ith word vector and Y represents a label set, explanations extracted for

target class c from gradients stored during backpropagation can be computed as sensitivity scores:2

∥∇xi
fc(x1:n)∥2. (2.9)

Alternatively, saliency scores can be obtained by taking the dot-product of the gradient with the input vector, an

approach known as Input × Gradient:

xi · ∇xifc(x1:n). (2.10)

Note that for a linear model this gradient equals the total contribution of the ith feature to the target class c.

To overcome the problem of having gradients close to zero, Sundararajan et al. (2016) propose Integrated

Gradients, an approach that average gradients for m inputs linearly spaced between a baseline vector x̄1:n and

the original input x1:n:
xi − x̄i

m
·

m∑
j=1

∂fc(x̄1:n + j
m (x1:n − x̄1:n))

∂xi
. (2.11)

In NLP, the baseline vector is usually defined as a sequence of zero, <unk>, or <mask> vectors.

Pertubation-based methods. To analyze the impact of the model output with respect to perturbations to the

input, perturbation-based methods compute the following expression for each ith word:

fc(x1:n)− fc(ei(x1:n)), (2.12)

where ei is a function that perturbs that ith input vector, such as erasing it or replacing it by a placeholder vector.

Attention-based methods. Attention mechanisms automatically learn a probability distribution p = π(z) ∈

△n over the input vector, as defined in §2.1.2. This distribution is frequently used to explain the model’s deci-

sion since it is a component that directly aids the model during the forward propagation. The flexibility of atten-

tion mechanisms allows the design of many attention-based explanations. For example, as discussed in §2.1.2,

sparse attention explanations can be easily obtained by sparsity-inducing transformations, such as sparsemax

or α-entmax transformations. Attention explanations can also be improved by considering other components of

the network, such as the norm of value vectors—an approach known as Attention × Norm (Kobayashi et al.,

2020)—or as we will see in Chapter 7, using gradient information.

Rationalizers. Models in which a hard attention mechanism is employed to dynamically highlight relevant

tokens are known as rationalizers. More precisely, the traditional framework of rationalization involves training

two components cooperatively: the generator and the predictor. The generator encodes the input and produces

a “rationale” (e.g., highlights), while the predictor classifies the text given only the rationale as input (Lei et al.,

2016). The full process can be summarized as follows:

z = gen(x;ϕ), (2.13)

y = pred(x⊙ z; θ). (2.14)

2Gradient methods can also be applied in regression problems (Y ⊆ R).
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where ⊙ represents element-wise multiplication. To ensure that the explainer does not select all tokens (i.e.,

zi = 1,∀i), sparsity and contiguity penalties are often applied to z to encourage the selection of compact and

contiguous rationales:

Ω(z) = λ1

∑
i

|zi|︸ ︷︷ ︸
sparsity

+λ2

∑
i

|zi − zi+1|︸ ︷︷ ︸
contiguity

. (2.15)

Contiguity is usually desired as there is some evidence that it improves readability (Jain et al., 2020). A rational-

izer is considered “stochastic” when the rationale generator is modeled with stochastic random variables, such as

Bernoulli (Lei et al., 2016) or HardKuma (Bastings et al., 2019), resulting in a sampling operation z ∼ gen(x).

On the other hand, a rationalizer is “deterministic” when it avoids sampling and instead computes a determin-

istic mapping z = gen(x), often relaxing latent selections zi ∈ [0, 1], such as with sparsemax (Treviso and

Martins, 2020) or SparseMAP (Guerreiro and Martins, 2021). To train stochastic rationalizers, the expected

cost can be minimized using REINFORCE or the reparameterization trick. In contrast, training deterministic

rationalizers is simpler because the gradients can be calculated exactly. In this thesis, specifically in Chapter 4,

we will employ deterministic rationalizers for masking the input text in order to create counterfactuals with a

span-infilling model, and later leverage their differentiability properties to produce better rationales.

Counterfactuals. In NLP, counterfactuals refer to alternative texts that describe a different outcome than what

is encoded in a given factual text. Prior works (Verma et al., 2020; Ross et al., 2021; Wu et al., 2021; Robeer

et al., 2021) have focused on developing methods for generating counterfactuals that adhere to certain key

properties, such as:

• Validity: the generated counterfactuals should encode a different label from the original text.

• Closeness: the changes made to the text should be small, not involving large-scale rewriting of the input.

• Fluency: the generated counterfactuals should be coherent and grammatically correct.

• Diversity: the method should generate a wide range of counterfactuals with diverse characteristics, rather

than only a limited set of variations.

We note that although adversarial examples are also defined as inputs that change the model prediction, they

are conceptually different from counterfactuals. More precisely, adversarial examples are inputs that change

the model’s prediction but are not necessarily realistic, as they may not necessarily adhere to closeness, fluency,

or diversity properties (Wallace et al., 2019). In Chapter 4, we propose a counterfactual generator method that

follow these properties.

2.3.2 Evaluation

Over the past few years, the process of evaluating explainability in NLP has evolved along multiple paths.

Bringing explainability methods under a unified framework is challenging, as they are often designed for specific

tasks and deliver explanations in a variety of formats. Nonetheless, a growing trend has emerged in using certain

metrics to assess highlight-based explanations, such as:

15



• Plausibility: assesses the human-likeness of the explanations. It can be computed by performing human

evaluations or by calculating the overlap with annotated snippets.

• Readability: assesses if the explanations are human-readable. It can be computed via human evaluation,

via reference-based metrics (e.g., BLEU), or by using a proxy model (e.g., perplexity, BERT score).

• Faithfulness: gives the degree in which the explanation resembles the true reasoning process the led

to the model’s prediction. As pointed by Wiegreffe and Pinter (2019), evaluating faithfulness is very

challenging since we might need to know causal dependencies a priori. However, some proxy metrics

have been proposed to quantify this notion, such as sufficiency and comprehensiveness (DeYoung et al.,

2020; Carton et al., 2020).

• Simulability: tells how informative an explanation with the process of presenting an explanation for a

particular prediction (and possibly the input) to a human, who then tries to correctly guess the model’s

prediction (Doshi-Velez and Kim, 2017; Treviso and Martins, 2020; Hase and Bansal, 2020; Pruthi et al.,

2022). In Chapter 3, we design an automatic framework for computing forward simulability, assessing

several explainability methods with it. And next, in Chapter 4, we exploit an automatic counterfactual

generator to evaluate explanations in terms of counterfactual simulation, where the goal is instead to

identify parts of the input that must be changed in order to induce a different model’s prediction.
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Part I

Selective Sparsity for Explainability
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In this chapter, we first categorize explainability techniques according to a typology that links classical

feature selection for model interpretability with dynamic selection for decision interpretability. In Chapter 1,

we covered the debate around attention explanations and the difficulty in evaluating explainability in NLP. To

address this issue, we then take inspiration from the simulability setup proposed by Doshi-Velez and Kim (2017)

and cast explainability as a communication problem between an explainer and a layperson about a classifier’s

decision, allowing empirical evaluations under a unique perspective.

We use this framework to systematically compare various explainers applied on top of simple recurrent

neural network (RNN) models—such as erasure, gradient methods, and attention mechanisms—on three tasks:

text classification, natural language inference, and machine translation.1

With different configurations of explainers and laypeople (including both machines and humans), our exper-

iments reveal an advantage of attention-based explainers over gradient and erasure methods. We also show that

selective attention is a simpler alternative to stochastic rationale extractors. Furthermore, human experiments

show strong results on text classification with post-hoc explainers trained to optimize communication success.

This chapter is based on Treviso and Martins (2020).

3.1 Motivation

The widespread use of machine learning to assist humans in decision making brings the need for explaining

models’ predictions (Doshi-Velez and Kim, 2017; Lipton, 2018; Rudin, 2019; Miller, 2019). This poses a

challenge in NLP, where current neural systems are generally opaque (Goldberg and Hirst, 2017; Peters et al.,

2018b; Devlin et al., 2019). Despite the large body of recent work (reviewed in §3.7), a unified perspective

modeling the human-machine interaction—a communication process in its essence—is still missing.

Many methods have been proposed to generate explanations. Some neural network architectures are equipped

with built-in components—attention mechanisms—which weigh the relevance of input features for triggering

a decision (Bahdanau et al., 2015; Vaswani et al., 2017). Top-k attention weights provide plausible, but not

always faithful, explanations (Jain and Wallace, 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019).

Rationalizers with hard attention are arguably more faithful, but require stochastic networks, which are harder

to train (Lei et al., 2016; Bastings et al., 2019). Other approaches seek local explanations by evaluating the

gradient of the predicted label with respect to the input features (Li et al., 2016a; Arras et al., 2016), or in a

post-hoc manner by training a sparse linear model on a vicinity of the input example (Ribeiro et al., 2016), or

by repeatedly querying the classifier with leave-one-out strategies (Li et al., 2016a; Feng et al., 2018).

How should these different approaches be compared? Several diagnostic tests have been proposed: Jain and

Wallace (2019) assessed the explanatory power of attention weights by measuring their correlation with input

gradients; Wiegreffe and Pinter (2019) and DeYoung et al. (2020) developed more informative tests, including

a combination of comprehensiveness and sufficiency metrics and the correlation with human rationales; Jacovi

and Goldberg (2020) proposed a set of evaluation recommendations and a graded notion of faithfulness. Most

proposed frameworks rely on correlations and proxy metrics, sidestepping the main practical goal of prediction

explainability—the ability to communicate an explanation to a human user.

1While pretrained transformers were still in their infancy at the time of this work, RNNs with attention were considered the standard
architecture for studying interpretability in NLP, particularly for text classification and natural language inference tasks.
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Explainer Layperson

ŷ m
ỹ 

Classifier

Figure 3.1: Our framework to model explainability as communication. Predictions ŷ are made by a classifier C; an explainer
E (either embedded in C or operating post-hoc) accesses these predictions and communicates an explanation (a message m)
to the layperson L. Success of the communication is dictated by the ability of L and C to match their predictions: ỹ ?

= ŷ.
Both the explainer and layperson can be humans or machines.

In this work, we fill the gap above by proposing a unified framework that regards explainability as a com-

munication problem. Our framework is inspired by human-grounded evaluation through forward simula-

tion/prediction, as proposed by Doshi-Velez and Kim (2017, §3.2), where humans are presented with an ex-

planation and an input, and must correctly simulate the model’s output (regardless of the true output). We

model this process as shown in Figure 3.1, by considering the interaction between a classifier (the model whose

predictions we want to explain), an explainer (which provides the explanations), and a layperson (which must

recover the classifier’s prediction). We show that different configurations of these components correspond to

previously proposed explanation methods, and we experiment with explainers and laypeople being both humans

and machines.

Our framework recovers as particular cases many previously proposed explainers, according to a typology

that draws a connection between traditional feature selection (Guyon and Elisseeff, 2003) and modern expla-

nation techniques, and it also inspires new ones: embedded explainers based on selective attention (Martins

and Astudillo, 2016; Peters et al., 2019), and trainable explainers based on emergent communication (Foerster

et al., 2016; Lazaridou et al., 2016).

Overall, our contributions are:

• We draw a link between recent techniques for explainability of neural networks and classic feature selec-

tion in linear models (§3.2). This leads to new embedded methods for explainability through selective,

sparse attention (§3.3).

• We propose a new framework to assess explanatory power as the communication success rate between an

explainer and a layperson (§3.4).

• We experiment with text classification, natural language inference, and machine translation, using differ-

ent configurations of explainers and laypeople, both machines (§3.5) and humans (§3.6).

3.2 Revisiting Feature Selection

A common way of generating explanations is by highlighting rationales (Zaidan and Eisner, 2008). The

principle of parsimony (“Occam’s razor”) advocates simple explanations over complex ones. This principle

inspired a large body of work in traditional feature selection for linear models.

We start by drawing a link between explainability of neural networks and feature selection in linear models,

making a bridge between the two worlds. This connection is tied to the distinction between model interpretabil-

ity and prediction explanations made by Lipton (2018). Table 3.1 highlights the connections.
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Static selection (model interpretability) Dynamic selection (prediction explainability)

Wrappers Forward selection, backward elimination (Ko-
havi and John, 1997)

Input reduction (Feng et al., 2018), representation
erasure (leave-one-out) (Li et al., 2016b; Serrano
and Smith, 2019), LIME (Ribeiro et al., 2016)

Filters Pointwise mutual information (Church and
Hanks, 1989), recursive feature elimination
(Guyon et al., 2002)

Input gradient (Li et al., 2016a), layerwise rele-
vance propagation (Bach et al., 2015), top-k soft-
max attention

Embedded ℓ1-regularization (Tibshirani, 1996), elastic net
(Zou and Hastie, 2005)

Stochastic attention (Xu et al., 2015; Lei et al.,
2016; Bastings et al., 2019), sparse attention (this
work, §3.3)

Table 3.1: Overview of static and dynamic feature selection techniques.

Traditional feature selection methods (Guyon and Elisseeff, 2003) are mostly concerned with model inter-

pretability, i.e., understanding how models behave globally. Feature selection happens statically during model

training, after which irrelevant features are permanently deleted from the model. This contrasts with prediction

explainability in neural networks, where feature selection happens dynamically at run time: here explanations

are input-dependent, hence a feature not relevant for a particular input can be relevant for another. Are these two

worlds far away? Guyon and Elisseeff (2003, §4) proposed a typology for traditional feature selection with three

classes of methods, distinguished by how they model the interaction between their main two components, the

feature selector and the learning algorithm. We argue that this typology can also be used to characterize various

explanation methods, if we replace these two components by the explainer E and the classifier C, respectively.

• Wrapper methods, in the wording of Guyon and Elisseeff (2003), “utilize the learning machine of inter-

est as a black box to score subsets of variables according to their predictive power.” This means greedily

searching over subsets of features, training a model with each candidate subset. In the dynamic feature

selection world, this is somewhat reminiscent of the leave-one-out method of Li et al. (2016b), the abla-

tive approach of Serrano and Smith (2019), and LIME (Ribeiro et al., 2016), which repeatedly queries the

classifier to label new examples.

• Filter methods decide to include/exclude a feature based on an importance metric (such as feature counts

or pairwise mutual information). This can be done as a preprocessing step or by training the model once

and thresholding the feature weights. In dynamic feature selection, this is done when we examine the

gradient of the prediction with respect to each input feature, and then select the features whose gradients

have large magnitude (Li et al., 2016a; Arras et al., 2016; Jain and Wallace, 2019),2 and when thresholding

softmax attention scores to select relevant input features, as analyzed by Jain and Wallace (2019) and

Wiegreffe and Pinter (2019).

• Embedded methods, in traditional feature selection, embed feature selection within the learning algo-

rithm by using a sparse regularizer such as the ℓ1-norm (Tibshirani, 1996). Features that receive zero

weight become irrelevant and can be removed from the model. In dynamic feature selection, this encom-

passes methods where the classifier produces rationales together with its decisions (Lei et al., 2016; Bast-

ings et al., 2019). We propose in §3.3 an alternative approach via sparse attention (Martins and Astudillo,

2In linear models this gradient equals the feature’s weight.
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2016; Peters et al., 2019), where the selection of words for the rationale resembles ℓ1-regularization.

In §3.4, we frame each of the cases above as a communication process, where the explainer E aims to

communicate a short message with the relevant features that triggered the classifier C’s decisions to a layperson

L. The three cases above are distinguished by the way C and E interact.

3.3 Embedded Sparse Attention

The case where the explainer E is embedded in the classifier C naturally favors faithfulness, since the

mechanism that explains the decision (the why) can also influence it (the how).

Attention mechanisms (Bahdanau et al., 2015) allow visualizing relevant input features that contributed to

the model’s decision. However, the traditional softmax-based attention is dense, i.e., it gives some probability

mass to every feature, even if small. The typical approach is to select the top-k words with largest attention

weights as the explanation. However, this is not a truly embedded method, but rather a filter, and as pointed out

by Jain and Wallace (2019) and Wiegreffe and Pinter (2019), it may not lead to faithful explanations.

An alternative is to embed in the classifier an attention mechanism that is inherently selective, i.e., which

can produce sparse attention distributions natively, where some input features receive exactly zero attention. An

extreme example is hard attention, which, as argued by DeYoung et al. (2020), provides more faithful explana-

tions “by construction” as they discretely extract snippets from the input to pass to the classifier. A problem with

hard attention is its non-differentiability, which complicates training (Lei et al., 2016; Bastings et al., 2019). We

consider in this work a different approach: using end-to-end differentiable sparse attention mechanisms, via the

sparsemax (Martins and Astudillo, 2016) and the recently proposed 1.5-entmax transformation (Peters et al.,

2019), described in detail in §2.1.2. These sparse attention transformations have been applied successfully to

machine translation and morphological inflection (Peters et al., 2019; Correia et al., 2019). Words that receive

non-zero attention probability are selected to be part of the explanation. This is an embedded method akin of

the use of ℓ1-regularization in static feature selection. We experiment with these sparse attention mechanisms

in §3.5.

3.4 Explainability as Communication

We now have the necessary ingredients to describe our unified framework for comparing and designing

explanation strategies, illustrated in Figure 3.1.

Our fundamental assumption is that explainability is intimately linked to the ability of an explainer to com-

municate the rationale of a decision in terms that can be understood by a human; we use the success of this

communication as a criterion for how informative the explanation is.

3.4.1 The Classifier-Explainer-Layperson setup

Our framework draws inspiration from Lewis’ signaling games (Lewis, 2008) and the recent work on emer-

gent communication (Foerster et al., 2016; Lazaridou et al., 2016; Havrylov and Titov, 2017). Our starting point

is the classifier C : X → Y which, when given an input x ∈ X , produces a prediction ŷ ∈ Y . This is the pre-

diction that we want to explain. An explanation is a message m ∈ M, for a predefined message space M (for
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example, a rationale). The goal of the explainer E is to compose and successfully communicate messages m

to a layperson L. The success of the communication is dictated by the ability of L to reconstruct ŷ from m with

high accuracy. In this work, we experiment with E and L being either humans or machines. Our framework

is inspired by human-grounded evaluation through forward simulation/prediction, as proposed by Doshi-Velez

and Kim (2017, §3.2). More formally:

• The classifier C is the model whose predictions we want to explain. For given inputs x, C produces ŷ

that are hopefully close to the ground truth y. We are agnostic about the kind of model used as a classifier,

but we assume that it computes certain internal representations h that can be exposed to the explainer.

• The explainer E produces explanations for C’s decisions. It receives the input x, the classifier prediction

ŷ = C(x), and optionally the internal representations h exposed by C. It outputs a message m ∈ M

regarded as a “rationale” for ŷ. The message m = E(x, ŷ, h) should be simple and compact enough to

be easily transmitted and understood by the layperson L. The message space M must be composed of

representations that are readable to humans (Wiegreffe and Pinter, 2019). For reasons that will be clear

later, an explainer might not use all of its inputs to produce explanations, characterizing explanations with

limited information. In this work, we constrain messages to be bags-of-words (BoWs) extracted from the

textual input x.3

• The layperson L is a simple model (e.g., a linear classifier)4 that receives the message m as input,

and predicts a final output ỹ = L(m). The communication is successful if ỹ = ŷ. Given a test set

{x1, . . . , xN}, we evaluate the communication success rate (CSR) as the fraction of examples for which

the communication is successful:

CSR =
1

N

N∑
n=1

[[
C(xn) = L(E(xn, C(xn)))

]]
, (3.1)

where [[·]] is the Iverson bracket notation.

Under this framework, we regard the communication success rate as a quantifiable measure of explainability:

a high CSR means that the layperson L is able to replicate the classifier C’s decisions a large fraction of the

time when presented with the messages given by the explainer E; this assesses how informative E’s messages

are for the two agents to communicate successfully.

Our framework is flexible, allowing different configurations for C, E, and L. In Figure 3.2 we show ex-

amples of how sparse attention can be treated as explanation in the context of natural language inference and

machine translation. Later, in §3.5, we carry experiments with different explainers and laypeople for text clas-

sification, natural language inference, and machine translation.

Relation to filters and wrappers. In the wrapper and filter approaches described in §3.2, the classifier C and

the explainer E are separate components. In these approaches, E works as a post-hoc explainer, querying C

with new examples or requesting gradient information.

3Note that our framework is flexible about the choice of this message space M. For example, explanations could also be prototypes,
i.e., small subsets of training examples.

4The reason why we assume the layperson is a simple model is to encourage the explainer to produce simple and explanatory messages,
in the sense that a simple model can learn with them. A more powerful layperson could potentially do well even with bad explanations.
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A biker rides next to the ocean

But      we     start     to      see       a     change    .      </s>

Aber        wir     beginnen       ,          eine   Veränderung   ...

Figure 3.2: (left) Example of sparse attention for natural language inference. The selected premise words (“biker”, “glass”,
“rides”, and “fountain”) form the message, together with the hypothesis in the bottom. (right) Example of sparse attention
for machine translation. When the model is generating the word “Veränderung”, the source words “a” and “change” are
treated as explanation and sent as message.

Relation to embedded explanation. By contrast, in the embedded approaches of Lei et al. (2016) and the

selective sparse attention introduced in §3.3, the explainer E is directly embedded as an internal component of

the classifier C, returning the selected features as the message. This approach is arguably more faithful, as E is

directly linked to the mechanism that produces C’s decisions.

3.4.2 Joint training of explainer and layperson

So far we have assumed that E is given beforehand, chosen among existing explanation methods, and that

L is trained to assess the explanatory ability of E. But can our framework be used to create new explainers by

training E and L jointly? We will see how this can be done by letting E and L play a cooperative game (Lewis,

2008). The key idea is that they need to learn a communication protocol that ensures high CSR (Eq. 3.1). Special

care needs to be taken to rule out “trivial” protocols and ensure plausible, potentially faithful, explanations. We

propose a strategy to ensure this, which will be validated using human evaluation in §3.6.5

Let Eθ and layperson Lϕ be trained models (with parameters θ and ϕ), learned together to optimize a

multi-task objective with two terms:

• A reconstruction term that controls the information about the classifier’s decision ŷ. We use a cross-

entropy loss on the output of the layperson L, using ŷ (and not the true label y) as the ground truth:

L(ϕ, θ) = − log pϕ(ŷ | m), where m is the output of the explainer Eθ.

• A faithfulness term that encourages the explainer E to take into account the classifier’s decision process

when producing its explanation m. This is done by adding a squared loss term Ω(θ) = ∥h̃(Eθ), h∥2

where h̃ is E’s prediction of C’s internal representation h.

The objective function is a combination of these two terms, LΩ(ϕ, θ) := λΩ(θ) + L(ϕ, θ). We used λ = 1

in our experiments. This objective is minimized in a training set that contains pairs (x, ŷ). Therefore, in this

model the message m is latent and works as a “bottleneck” for the layperson L, which does not have access

to the full input x, to guess the classifier’s prediction ŷ — related models have been devised in the context of

emergent communication (Lazaridou et al., 2016; Foerster et al., 2016; Havrylov and Titov, 2017) and sparse

autoencoders (Trifonov et al., 2018; Subramanian et al., 2018).
5Other approaches, as proposed by Lei et al. (2016) and Yu et al. (2019), develop rationalizers from cooperative or adversarial games

between generators and encoders. However, those frameworks do not aim at explaining an external classifier.
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We minimize the objective above with gradient backpropagation. To ensure end-to-end differentiability,

during this joint training we use sparsemax attention (§3.3) to select the relevant words in the message. One

important concern in this model is to prevent E and L from learning a trivial protocol to maximize CSR. To

ensure this, we forbid E from including stopwords in its messages and during training we use a linear schedule

for the probability of the explainer accessing the predictions of the classifier (ŷ), which are hidden otherwise,

such that at the end of training, the explainer access ŷ with probability β. In our experiments, we set β to 20%

(chosen on the validation set as described in §A.3.2).

3.5 Experiments

We experimented with our framework in three NLP tasks: text classification, natural language inference

(NLI), and machine translation.

3.5.1 Text classification and NLI

We picked the same datasets as Jain and Wallace (2019) and Wiegreffe and Pinter (2019), excluding the

smallest ones. Concretely, we used 4 datasets (SST, IMDB, AgNews, Yelp) for text classification and one

dataset (SNLI) for NLI, with statistics in Table 3.2. For SST, IMDB, and SNLI we used the standard splits, and

for AgNews and Yelp we randomly split the dataset, leaving 85% for training and 15% for test.

Name # Train # Test Avg. tokens # Classes

SST 6920 1821 19 2
IMDB 25K 25K 280 2
AgNews 115K 20K 38 2
Yelp 5.6M 1M 130 5
SNLI 549K 9824 14 / 8 3
IWSLT 206K 2271 20 / 18 134,086

Table 3.2: Dataset statistics. The average number of tokens for SNLI is related to the premise and hypothesis, and for
IWSLT to the source and target sentences.

Classifier C. For text classification, the input x ∈ X is a document and the output set Y is a set of labels (e.g.

topics or sentiment labels). The message is a bag of words (BoW) extracted from the document. As in Jain and

Wallace (2019) and Wiegreffe and Pinter (2019), our classifier C is an RNN with attention. For NLI, the input x

is a pair of sentences (premise and hypothesis) and the labels in Y are entailment, contradiction, and neutral. We

let messages be again BoWs, and we constrain them to be selected from the premise (and concatenated with the

full hypothesis). We used a similar classifier as above, but with two independent BiLSTM layers, one for each

sentence. We used the additive attention of Bahdanau et al. (2015) with the last hidden state of the hypothesis

as the query and the premise vectors as keys.

We also experimented with RNN classifiers that replace softmax attention by 1.5-entmax (Cent) and sparse-

max (Csp), and with the rationalizer models of Lei et al. (2016) (Cbern) and Bastings et al. (2019) (Chk). Details

about these classifiers and their hyperparameters are listed in §A.1. Table 3.3 reports the accuracy of all classi-

fiers used in our experiments. The attention-based models all perform very similarly and generally better than
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CLASSIFIER SST IMDB AGNEWS YELP SNLI

BoW (L) 82.54 88.96 95.62 68.78 69.81
RNN softmax (C) 86.16 91.79 96.28 75.80 78.34
RNN 1.5-entmax (Cent) 86.11 91.72 96.30 75.72 79.20
RNN sparsemax (Csp) 86.27 91.52 96.37 75.72 78.78
Bernoulli (Cbern) 81.99 87.65 95.68 70.12 79.24
HardKuma (Chk) 84.13 90.52 96.38 74.36 85.49

Table 3.3: Accuracies of the original classifiers on text classification and natural language inference.

the rationalizer models, except for SNLI, where the latter use a stronger model with decomposable attention.

As expected, in general, all these classifiers outperform a bag-of-words model which is the model we use as the

layperson.

Layperson L and explainer E. We used a simple linear BoW model as the layperson L. For NLI, the

layperson sees the full hypothesis, encoding it with a BiLSTM. The BoW from the explainer is passed through

a linear projection and summed with the last hidden state of the BiLSTM.

We evaluated the following explainers:

1. Erasure, a wrapper similar to the leave-one-out approaches of Jain and Wallace (2019) and Serrano and

Smith (2019). We obtain the word with largest attention, zero out its input vector, and repass the whole

input with the erased vector to the classifier C. We produce the message by repeating this procedure k

times.

2. Top-k gradients, a filter approach that ranks words by their “input × gradient” product, |xi · ∂ŷ
∂xi

| (Ancona

et al., 2018; Wiegreffe and Pinter, 2019). The top-k words are selected as the message.

3. Top-k and selective attention: We experimented both using attention as a filter, by selecting the top-k

most attended words as the message, and embedded in the classifier C, by using the selective attentions

described in §3.3 (1.5-entmax and sparsemax).

4. The rationalizer models of Lei et al. (2016) and Bastings et al. (2019). These models compose the

message by stochastically sampling rationale words, respectively using Bernoulli and HardKuma distri-

butions. For SNLI, since these models use decomposable attention instead of RNNs, we form the message

by selecting all premise words that are linked with any hypothesis word via a selected Bernoulli variable.

We also report a random baseline, which randomly picks k words as the message. We show examples of

messages for all explainers in §A.6.

Results. Table 3.4 reports results for the communication success rate (CSR, Eq. 3.1) and for the accuracy of

the layperson (ACCL). For each explainer, we indicate which classifier it is explaining; note that the CSR is

only comparable across explainers that use the same classifier. The goal of this experiment is to answer the

following questions:

• How do different explainers (wrappers, filters, embedded) compare to each other in CSR?
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SST IMDB AGNEWS YELP SNLI

CLF. EXPLAINER CSR ACCL CSR ACCL CSR ACCL CSR ACCL CSR ACCL

C Random 69.41 70.07 67.30 66.67 92.38 91.14 58.27 53.06 75.83 68.74
C Erasure 80.12 81.22 92.17 88.72 97.31 95.41 78.72 68.90 77.88 70.04
C Top-k gradient 79.35 79.24 86.30 83.93 96.49 94.86 70.54 62.86 76.74 69.40
C Top-k softmax 84.18 82.43 93.06 89.46 97.59 95.61 81.00 70.18 78.66 71.00
Cent Top-k 1.5-entmax 85.23 83.31 93.32 89.60 97.29 95.67 82.20 70.78 80.23 73.39
Csp Top-k sparsemax 85.23 81.93 93.34 89.57 95.92 94.48 82.50 70.99 82.89 74.76

Cent Selec. 1.5-entmax 83.96 82.15 92.55 89.96 97.30 95.66 81.38 70.41 77.25 71.44
Csp Selec. sparsemax 85.23 81.93 93.24 89.66 95.92 94.48 83.55 71.60 82.04 73.46
Cbern Bernoulli 82.37 78.42 91.66 86.13 96.91 94.43 84.93 66.89 76.81 69.65
Chk HardKuma 85.17 80.40 94.72 90.16 97.11 95.45 87.39 71.64 74.98 71.48

Table 3.4: CSR and layperson accuracy (ACCL) for several explainers. For each explainer, we indicate the corresponding
classifier from Table 3.3; in all cases the layperson is a BoW model. Only explainers of the same classifier can be compared
in terms of CSR. Top rows report performance for random, wrapper and filter explainers, for fixed k-word messages (the
values of k for the several datasets are {5, 10, 10, 10, 4}, respectively). Bottom rows correspond to embedded methods
where k is given automatically via sparsity. The average k obtained by 1.5-entmax, sparsemax, Bernoulli and HardKuma
are: SST: {4.65, 2.59, 6.10, 4.82}; IMDB: {28.23, 12.94, 39.40, 24.18}; AGNEWS {5.65, 4.14, 4.01, 9.68}; YELP: {60.61,
23.86, 9.15, 33.18}; SNLI: {12.96, 8.27, 15.04, 6.40}.

• Are selective sparse attention methods effective?

• Does a layperson guided by an explainer perform better than an unguided layperson that sees the entire

document?

• How is the trade-off between message length and CSR?

The first thing to note is that, as expected, the random baseline is much worse than the other explainers,

for all text classification datasets.6 Among the non-trivial explainers, the attention and erasure outperform

gradient methods: the erasure and top-k attention explainers have similar CSR, with a slight advantage for

attention methods. Note that the attention explainers have the important advantage of requiring a single call to

the classifier, whereas the erasure methods, being wrappers, require k calls. The worse performance of top-k

gradient (less severe on AGNEWS) suggests that the words that locally cause bigger output changes are not

necessarily the most informative ones.7

Regarding the different attention models (softmax, entmax, and sparsemax), we see that sparse transfor-

mations tend to have slightly better ACCL, in addition to better ACCC (see Table 3.3). The embedded sparse

attention methods achieved communication scores on par with the top-k attention methods without a prescribed

k, while producing, by construction, more faithful explanations. Both our proposed models (sparsemax and

1.5-entmax) seem generally more accurate than the Bernoulli model of Lei et al. (2016) and comparable to

the HardKuma model of Bastings et al. (2019), with a much simpler training procedure, not requiring gradient

estimation over stochastic computation graphs.

By comparing the accuracy of the classifiers in Table 3.3 with the ACCL columns on Table 3.4, we see a

consistent drop from the RNN classifiers to the layperson, regardless of the explainer. This is expected, since the

6This is less pronounced in SNLI, as the hypothesis alone already gives strong baselines (Gururangan et al., 2018).
7A potential reason is that attention directly influences C’s decisions, being an inside component of the model. Gradients and erasure,

however, are extracted after decisions are performed. The reason might be similar to filter methods being generally inferior to embedded
methods in static feature selection, since they ignore feature interactions that may jointly play a role in model’s decisions.
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Figure 3.3: Message sparsity analysis for IMDB (left) and SNLI (right). For SNLI, k = 0 corresponds to a case where the
layperson only sees the hypothesis. The rightmost entry represents an explainer that simply passes forward all words to the
layperson. The average k for sparsemax and 1.5-entmax are, respectively: 13 and 28 for IMDB; 8 and 13 for SNLI.

layperson is a much weaker BoW classifier, and it only has access to a limited number of words in the document.

However, we can also see that for several explainers the associated laypersons are on par or outperform a

BoW classifier that has access to the entire input. This characteristic enables the direct usage of the layperson

as a powerful, compact, and transparent model.8

Finally, Figure 3.3 shows the trade-off between the length of the message and the communication success

rate for different values of k both for IMDB and SNLI. Interestingly, we observe that CSR does not increase

monotonically with k. As k increases, CSR starts by increasing but then it starts dropping when k becomes

too large. This matches our intuition: in the two extreme cases where k = 0 and where k is the document

length (corresponding to a full bag-of-words classifier) the message has no information about how the classifier

C behaves. By setting k = 0, meaning that the layperson L only looks at the hypothesis, the CSR is reasonably

high (∼74%), but as soon as we include a single word in the message this baseline is surpassed by 4 points or

more. This is consistent with the finding by Gururangan et al. (2018), which suggests that we can achieve a high

accuracy for SNLI by considering only the hypothesis as input.

3.5.2 Machine Translation

To compare explainers on a more challenging task with large |Y|, we ran an experiment on neural machine

translation (NMT), adapting the JoeyNMT framework (Kreutzer et al., 2019). We used the EN→DE IWSLT

2017 dataset (Cettolo et al., 2017), with the standard splits (Table 3.2).

We consider the decision taken by the NMT system when generating the tth target word (y), given the

source sentence x and the previously generated words y1:t−1. Note that in this example Y is the entire target

vocabulary. The message is the concatenation of k source words (ranked by importance, without any word order

information) with the prefix y1:t−1. The layperson must predict the target word given this limited information.

Fig. 3.2 illustrates our setup.

We employed beam search decoding with beam size of 5, achieving a BLEU score of 20.49, 21.12 and 20.75

for softmax, 1.5-entmax and sparsemax, respectively. The layperson is a model that uses an unidirectional 256D

LSTM to encode the translation prefix, and a feed-forward layer to encode the concatenation of k source word

embeddings (the message) to a 256D vector. The two vectors are concatenated and passed to a linear output

layer to predict the next word ỹ ∈ Y . Results comparing different filtering methods varying k are shown in

Table 3.5.

We show the CSR as we varied k ∈ {0, 1, 3, 5}. There are two main findings. First, we see again that top-k
8Since the layperson is trained on the classifier’s predictions and not on ground-truth labels, this corresponds to a scenario similar to

knowledge distillation (Hinton et al., 2015).
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EXPLAINER k = 0 k = 1 k = 3 k = 5

Random - - - 23.32
Top-k gradient 21.99 35.21 38.33 40.30
Top-k softmax 21.99 62.58 62.82 62.64
Top-k 1.5-entmax 22.31 62.53 63.48 62.69
Top-k sparsemax 22.14 62.21 61.94 61.92

Table 3.5: Results for IWSLT in terms of CSR.

attention outperforms top-k gradient, in this case with a wider margin. Second, we see that all methods

perform better as we increase k, albeit we can see a performance degradation of attention-based explainers for

k = 5. An interesting case is when k = 0, meaning that L has no access to the source sentence, behaving like

an unconditioned language model. In this case the performance is much worse, indicating that both explainers

are selecting relevant tokens when k > 0. This becomes clearer by looking at a random explainer, which yields

a CSR of 23.32 for k = 5, very close to the CSRs obtained with k = 0. Moreover, as we found for IMDB and

SNLI, increasing k does not necessarily leads to a higher CSR on IWSLT. Fig.3.4 depicts this finding.
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Figure 3.4: Message sparsity analysis for IWSLT. k = 0 corresponds to a case where the layperson only sees the translation
prefix. The rightmost entry is the average length of the examples in the test set, and therefore it represents an explainer that
simply pass forward all words to the layperson (i.e. a full bag-of-words). The average k for sparsemax and 1.5-entmax are,
respectively: 4.5 and 9.4.

3.6 Human Evaluation

To fully assess the quality of the explanations in a more realistic forward simulation setting, we performed

human evaluations, where the layperson L is a human instead of a machine.

Joint training of E and L. So far we compared several explainers, but what happens if we train E and L

jointly to optimize CSR directly, as described in §3.4.2? We experiment with the IMDB and SNLI datasets,

comparing with using humans for either the layperson, the explainer, or both.

Human layperson. We randomly selected 200 documents for IMDB and SNLI to be annotated by humans.

The extracted explanations (i.e. the selected words) were shuffled and displayed as a cloud of words to two

annotators, who were asked to predict the label of each document when seeing only these explanations. For

SNLI, we show the entire hypothesis as raw text and the premise as a cloud of words. The agreement between

annotators and other annotation details can be found in §A.5.
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CLF. EXPLAINER
IMDB SNLI

k CSRH CSRL ACCH ACCL k CSRH CSRL ACCH ACCL

C Erasure 5.0 89.25 94.00 86.25 90.00 4.0 72.50 73.50 83.50 70.00
C Top-k gradient 5.0 73.50 84.50 73.00 80.50 4.0 65.75 72.50 76.75 68.00
C Top-k softmax 5.0 89.25 93.00 88.25 88.00 4.0 72.00 76.50 82.75 71.50
Cent Top-k 1.5-entmax 5.0 89.25 92.50 85.75 86.50 4.0 70.00 81.50 80.50 76.50
Csp Top-k sparsemax 5.0 89.00 89.50 87.50 88.00 4.0 68.25 88.00 80.25 77.00

Cent Selec. 1.5-entmax 27.2 86.50 92.50 84.00 89.50 12.9 75.25 77.00 87.00 77.00
Csp Selec. sparsemax 12.8 87.75 92.50 86.75 89.00 8.0 72.25 82.00 85.00 79.00
Cbern Bernoulli 39.4 79.00 93.50 75.00 87.00 15.2 74.50 76.00 86.75 69.50
Chk HardKuma 24.3 83.75 93.50 80.75 89.00 6.4 79.25 71.50 87.50 68.50

C Joint E and L 2.7 96.75 98.50 89.25 91.50 2.8 58.00 93.50 70.00 78.50
- Human highlights - - - - - 2.8 83.25 83.50 83.25 83.50

Table 3.6: Results of the human evaluation. Reported are average message length k, human layperson CSRH /ACCH , and
machine layperson CSRL/ACCL. Only explainers of the same classifier can be compared in terms of CSR.

Human explainer. We also consider explanations generated by humans rather than machines. To this end,

we used the e-SNLI corpus (Camburu et al., 2018), which extends the SNLI with human rationales. Since the

e-SNLI corpus does not provide highlights over the premise for neutral pairs, we removed them from the test

set.9 We summarize our results in Table 3.6.

As in our previous experiments, better results were found both in terms of CSR and ACC for top-k attention

methods in comparison to top-k gradient. The ACC of erasure, top-k attention models, and human highlights

explainers are close, reinforcing again the good results for these explainers. Among the different attention

explainers, we see that selective attention explainers (§3.3) got very high ACCH , outperforming top-k explainers

for SNLI.

By carefully optimizing the communication (§3.4.2), we see that the joint explainer outperformed all the

other explainers in terms of ACCL and CSRL, and was able to achieve a very high human performance on

IMDB, largely surpassing other systems in CSRH and ACCH . This shows the potential of our communication-

based framework to also develop new post-hoc explainers with good forward simulation properties. However,

for SNLI, the joint explainer had much lower CSRH and ACCH , suggesting that for this task more sophisticated

explainers are required. Outputs for these explainers can be consulted in §A.6.

3.7 Related Work

There is a large body of work on analysis and interpretation of neural networks. Our work focuses on

prediction explainability, different from transparency or model interpretability (Doshi-Velez and Kim, 2017;

Lipton, 2018; Gilpin et al., 2018).

Rudin (2019) defines explainability as a plausible reconstruction of the decision-making process, and Riedl

(2019) argues that it mimics what humans do when rationalizing past actions. This inspired our post-hoc ex-

plainers in §3.4.2 and their use of the faithfulness loss term.

Recent works questioned the interpretative ability of attention mechanisms (Jain and Wallace, 2019; Serrano

9Note that the human rationales from eSNLI are not explanations about C, since the humans are explaining the gold labels. Therefore,
we have CSR=ACC always.
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and Smith, 2019). Wiegreffe and Pinter (2019) distinguished between faithful and plausible explanations and

introduced several diagnostic tools. Mullenbach et al. (2018) use human evaluation to show that attention

mechanisms produce plausible explanations, consistent with our findings in §3.6. None of these works, however,

considered the sparse selective attention mechanisms proposed in §3.3. Hard stochastic attention has been

considered by Xu et al. (2015); Lei et al. (2016); Alvarez-Melis and Jaakkola (2017); Bastings et al. (2019), but

a comparison with sparse attention and explanation strategies was still missing.

Besides attention-based methods, many other explainers have been proposed using gradients (Bach et al.,

2015; Montavon et al., 2018; Ding et al., 2019), leave-one-out strategies (Feng et al., 2018; Serrano and Smith,

2019), or local perturbations (Ribeiro et al., 2016; Koh and Liang, 2017), but a link with filters and wrappers in

the feature selection literature has never been made. We believe the connections revealed in §3.2 may be useful

to develop new explainers in the future.

Our trained explainers from §3.4.2 draw inspiration from emergent communication (Lazaridou et al., 2016;

Foerster et al., 2016; Havrylov and Titov, 2017). Some of our proposed ideas (e.g., using sparsemax for end-

to-end differentiability) may also be relevant to that task. Our work is also related to sparse auto-encoders,

which seek sparse overcomplete vector representations to improve model interpretability (Faruqui et al., 2015;

Trifonov et al., 2018; Subramanian et al., 2018). In contrast to these works, we consider the non-zero attention

probabilities as a form of explanation.

Some recent work (Yu et al., 2019; DeYoung et al., 2020) advocates comprehensive rationales. While

comprehensiveness could be useful in our framework to prevent trivial communication protocols between the

explainer and layperson, we argue that it is not always a desirable property, since it leads to longer explanations

and an increase of human cognitive load. In fact, our analysis of CSR as a function of message length (Fig-

ure 3.3) suggests that shorter explanations might be preferable. This is aligned to the “explanation selection”

principle articulated by Miller (2019, §4): “Similar to causal connection, people do not typically provide all

causes for an event as an explanation. Instead, they select what they believe are the most relevant causes.” Our

sparse, selective attention mechanisms proposed in §3.3 are inspired by this principle.

3.8 Conclusions and Subsequent Works

We proposed a unified framework that regards explainability as a communication problem between an ex-

plainer and a layperson about a classifier’s decision. In doing so, we organized existing approaches in a typology

that makes a bridge between traditional feature selection and modern explanation techniques. Following this

typology, we proposed new embedded methods based on selective attention, and post-hoc explainers trained

to optimize communication success. In our experiments, we observed that attention mechanisms and erasure

tend to outperform gradient methods on communication success rate, using both machines and humans as the

layperson, and that selective attention is effective, while simpler to train than stochastic rationalizers.

After our publication (Treviso and Martins, 2020), our work served as a base for the simulability framework

of Pruthi et al. (2022), who devised a novel strategy for incorporating explanations into the layperson’ learning

process. Their framework rebrands the classifier and layperson as teacher and student, respectively, and uses a

scaffolding setup to guide the student’s learning with the help of explanations provided by the teacher. Attention-

based methods were shown to outperform other methods, which supports our findings. Notably, this design
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effectively eliminates the impact of trivial protocols on simulability accuracy because the layperson does not

have access to explanations at test time. In Chapter 8, we explore this framework further by designing a new

explainer that uses sparsity to identify relevant heads in transformer-based quality estimation models. Hase

et al. (2020) follow our aspiration of assessing explainability via simulability and propose Leakage-Adjusted

Simulability (LAS), a metric for evaluating free-text explanations. Consistent with our findings, they discovered

that optimizing simulability leads to better explanations.

Another connection to our work is the improved learnable sparse explainer with structured constraints pro-

posed by Guerreiro and Martins (2021), called SPECTRA (Sparse Structured Text Rationalization), which uses

LP-SparseMAP (Niculae and Martins, 2020) to induce contiguous spans and limit the number of selected to-

kens in the explanation. We leverage SPECTRA in the next Chapter to guide the generation of high quality

counterfactuals, a necessary ingredient for computing counterfactual simulability in an automatic way.

Concurrent work. Notably, coinciding with the public release of our work, a concurrent work led by Hase

and Bansal (2020) proposed a human-centric communication setup and also demonstrated the significance of

leveraging simulability for evaluating explanations.
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In this chapter, we present a framework called CREST (ContRastive Edits with Sparse raTionalization),

which combines two effective and complementary methods for interpreting and training NLP models: selective

rationalization and counterfactual text generation. We begin by leveraging our previous findings and employ-

ing an embedded method based on sparse attention to produce explanations. Specifically, we explore SPEC-

TRA (Guerreiro and Martins, 2021), which replaces the α-entmax transformation with LP-SparseMAP (Niculae

and Martins, 2020) in order to induce contiguity and limit the maximum number of selected tokens in the expla-

nation. We then add a natural layer to our simulability setup to evaluate explanations in terms of counterfactual

simulation, where the aim is to predict a contrastive outcome, rather than the classifier’s prediction, given an

explanation as input.

While selective rationales and counterfactual examples are effective methods for interpreting NLP models,

prior work has not examined how they can be combined to leverage their complementary advantages. CREST

addresses this limitation by introducing a joint framework for selective rationalization and counterfactual text

generation, leading to improvements in counterfactual quality, model robustness, and interpretability. First,

CREST generates valid counterfactuals that are more fluent, diverse, and plausible than those produced by

previous methods. We show that these counterfactuals can be effectively used for data augmentation at scale,

reducing the need for human-generated examples. Second, we introduce a new loss function that leverages

CREST counterfactuals to regularize selective rationales and show that this regularization improves both model

robustness and rationale quality, compared to methods that do not leverage CREST counterfactuals. Our results

demonstrate that CREST successfully bridges the gap between selective rationales and counterfactual exam-

ples, addressing the limitations of existing methods and providing a more comprehensive view of a model’s

predictions.

This chapter is based on (Treviso et al., 2023b)—currently under review.

4.1 Motivation

As NLP models have become larger and less transparent, there has been a growing interest in developing

methods for finer-grained interpretation and control of their predictions. One class of methods leverages selec-

tive rationalization (Lei et al., 2016; Bastings et al., 2019), which trains models to first select rationales, or

subsets of relevant input tokens, and then make predictions based only on the selected rationales. These meth-

ods offer increased interpretability, as well as learning benefits, such as improved robustness to input perturba-

tions (Jain et al., 2020; Chen et al., 2022). Another class of methods generates counterfactual examples, or

modifications to input examples that change their labels. By providing localized views of decision boundaries,

counterfactual examples can be used as explanations of model predictions, contrast datasets for fine-grained

evaluation, or new training datapoints for learning more robust models (Ross et al., 2021; Gardner et al., 2020;

Kaushik et al., 2020).

This work is motivated by the observation that selective rationales and counterfactual examples allow for

interpreting and controlling model behavior through different means: selective rationalization improves model

transparency by weaving interpretability into a model’s internal decision-making process, while counterfactual

examples provide external signal more closely aligned with human causal reasoning (Wu et al., 2021).

We propose to combine both methods to leverage their complementary advantages with CREST, a joint
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Figure 4.1: Our generation procedure consists of two stages: (i) a mask stage that highlights relevant tokens in the input
through a learnable masker; and (ii) an edit stage, which receives a masked input and uses a masked language model to infill
spans conditioned on a prepended label.

framework for rationalization and counterfactual text generation. CREST first generates high-quality counter-

factuals (Figure 4.1), then leverages those counterfactuals to encourage consistency across “flows” for factual

and counterfactual inputs (Figure 4.2). In doing so, CREST unifies two key important dimensions of inter-

pretability introduced by Doshi-Velez and Kim (2017, §3.2), forward simulation and counterfactual simulation.

Our main contributions are:1

• We present CREST-Generation (Figure 4.1), a novel approach to generating counterfactual examples

by combining sparse rationalization with span-level masked language modeling (§4.3), which produces

valid, fluent, and diverse counterfactuals (§4.4, Table 4.1).

• We introduce CREST-Rationalization (Figure 4.2), a novel approach to regularizing rationalizers. CREST-

Rationalization decomposes a rationalizer into factual and counterfactual flows and encourages agreement

between the rationales for both (§4.5).

• We show that CREST-generated counterfactuals can be effectively used to increase model robustness,

leading to larger improvements on contrast and out-of-domain datasets than using manual counterfactuals

(§4.6.2, Tables 4.2 and 4.3).

• We find that rationales trained with CREST-Rationalization not only are more plausible, but also achieve

higher forward and counterfactual simulabilities (§4.6.3, Table 4.4).

Overall, our experiments show that CREST successfully combines the benefits of counterfactual examples

and selective rationales to improve the quality of each, resulting in a more interpretable and robust learned

model.

4.2 Background

4.2.1 Rationalizers

As detailed in §2.3.1, the traditional framework of rationalization involves training two components cooper-

atively: the generator—which consists of an encoder and an explainer—and the predictor. The encoder module
1Our code will be made publicly available (MIT license).
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Figure 4.2: Overview of CREST-Rationalization. We start by passing an input x through CREST-Generation, which yields
a counterfactual edit x̃ along side two masks: z⋆ for the original input, and z̃⋆ for the counterfactual. Next, we train
a new rationalizer (masker) decomposed into two flows: a factual flow that takes in x and produces a rationale z, and
a counterfactual flow that receives x̃ and produces a rationale z̃. Lastly, we employ a regularization term Ω(z, z̃) to
encourage agreement between rationales for original and counterfactual examples.

(enc) converts n input tokens into d-dimensional hidden state vectors H ∈ Rn×d, which are passed to the

explainer (expl) to generate a latent mask z ∈ {0, 1}n. The latent mask serves as the rationale since it is used

to select a subset of the input x⊙ z, which is then passed to the predictor module (pred) to produce a final pre-

diction ŷ ∈ Y , where Y = {1, ..., k} for k-class classification. The full process can be summarized as follows:

z = expl(enc(x;ϕ); γ), (4.1)

ŷ = pred(x⊙ z; θ), (4.2)

where Θ = {ϕ, γ, θ} represents trainable parameters. To ensure that the explainer does not select all tokens

(i.e., zi = 1,∀i), sparsity is usually encouraged in the rationale extraction. Moreover, explainers can also be

encouraged to select contiguous words, as there is some evidence that it improves readibility (Jain et al., 2020).

These desired properties may be encouraged via regularization terms during training (Lei et al., 2016; Bastings

et al., 2019), or via application of sparse mappings (Treviso and Martins, 2020; Guerreiro and Martins, 2021).

In this work, we will focus specifically on the SPECTRA rationalizer (Guerreiro and Martins, 2021): this

model leverages an explainer that extracts a deterministic structured mask z by solving a constrained inference

problem with SparseMAP (Niculae et al., 2018). SPECTRA has been shown to achieve comparable performance

with other rationalization approaches, in terms of end-task performance, plausibility with human explanations,

and robustness to input perturbation (Chen et al., 2022). Moreover, it is easier to train than other stochastic

alternatives (Lei et al., 2016; Bastings et al., 2019), and, importantly, it allows for simple control over the

properties of the rationales such as sparsity via its constrained inference formulation: by setting a budget B on

the rationale extraction, SPECTRA ensures that the rationale size will not exceed ⌈Bn⌉ tokens.

4.2.2 Counterfactuals

In NLP, counterfactuals refer to alternative texts that describe a different outcome than what is encoded

in a given factual text. Prior works (Verma et al., 2020) have focused on developing methods for generating

counterfactuals that adhere to several key properties, including:

• Validity: the generated counterfactuals should encode a different label from the original text.
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• Closeness: the changes made to the text should be small, not involving large-scale rewriting of the input.

• Fluency: the generated counterfactuals should be coherent and grammatically correct.

• Diversity: the method should generate a wide range of counterfactuals with diverse characteristics, rather

than only a limited set of variations.

While many methods for automatic counterfactual generation exist (Wu et al., 2021; Robeer et al., 2021;

Dixit et al., 2022), our work is mostly closely related to MiCE (Ross et al., 2021), which generates counter-

factuals in a two stage process that involves masking the top-k tokens with the highest ℓ1 gradient attribution

of a pretrained classifier, and infilling tokens for masked position with a T5-based model (Raffel et al., 2020).

MiCE further refines the resultant counterfactual with a binary search procedure to seek strictly minimal edits.

However, this process is computationally expensive and, as we show in §4.4.2, optimizing for closeness can lead

to counterfactuals that are less valid, fluent, and diverse. Next, we present an alternative method that overcomes

these limitations while still producing counterfactuals that are close to original inputs.

4.3 CREST-Generation

We now introduce CREST (ContRastive Edits with Sparse raTionalization), a framework that combines

selective rationalization and counterfactual text generation. CREST has two key components: (i) CREST-

Generation offers a controlled approach to generating counterfactuals, which we show are valid, fluent, and

diverse (§4.4.2); and (ii) CREST-Rationalization leverages these counterfactuals through a novel regularization

technique encouraging agreement between rationales for original and counterfactual examples. We demonstrate

that combining these two components leads to models that are more robust (§4.6.2) and interpretable (§4.6.3).

We describe CREST-Generation below and CREST-Rationalization in §4.5.

Formally, let x = ⟨x1, ..., xn⟩ represent a factual input text with a label yf . We define a counterfactual as

an input x̃ = ⟨x1, ..., xm⟩ labeled with yc such that yf ̸= yc. A counterfactual generator is a mapping that

transforms the original text x to a counterfactual x̃. Like MiCE, our approach for generating counterfactuals

consists of two stages, as depicted in Figure 4.1: the mask and the edit stages.

Mask stage. We aim to find a mask vector z ∈ {0, 1}n such that tokens xi associated with zi = 1 are relevant

for the factual prediction ŷf of a particular classifier C. To this end, we employ a SPECTRA rationalizer as the

masker. Concretely, we pretrain a SPECTRA rationalizer on the task at hand with a budget constraint B, and

define the mask as the rationale vector z ∈ {0, 1}n (see §4.2.1).

Edit stage. Here, we create edits by infilling the masked positions using an editor module G, such as a masked

language model: x̃ ∼ GLM(x⊙ z). In order to infill spans rather than single tokens, we follow MiCE and use

a T5-based model to infill spans for masked positions. During training, we fine-tune the editor to infill spans

by prepending the gold target label yf to the input. In order to generate counterfactual edits at test time, we

prepend a counterfactual label yc instead, and sample counterfactuals using beam search.

Overall, our procedure differs from that of MiCE in the mask stage: instead of extracting a mask via gradient-

based attributions and subsequent binary search, we leverage SPECTRA to find an optimal mask. Interestingly,
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IMDB SNLI

Method val. ↑ fl. ↓ div. ↓ clo. ↓ #tks val. ↑ fl. ↓ div. ↓ clo. ↓ #tks

Chance baseline 50.20 - - - - 52.70 - - - -
References 97.95 66.51 - - 184.4 96.75 63.52 - - 7.5
Manual edits 93.44 72.89 81.67 0.14 183.7 93.88 65.25 35.82 0.42 7.7

PWWS 28.07 101.91 74.56 0.16 179.0 17.97 160.11 31.81 0.36 6.8
CFGAN - - - - - 34.46 155.84 68.94 0.23 7.0
PolyJuice 36.69 68.59 56.41 0.45 94.6 41.80 62.02 39.01 0.40 11.6
MiCE (bin. search) 72.13 76.72 73.76 0.20 171.3 76.17 63.94 42.18 0.35 7.9

MiCE (30% mask) 76.80 79.35 49.64 0.39 161.3 77.26 59.71 34.08 0.40 8.3
MiCE (50% mask) 83.20 89.92 20.71 0.65 115.7 84.12 68.32 24.27 0.52 7.6

CREST (30% mask) 75.82 67.29 57.58 0.33 180.9 75.45 62.00 41.36 0.29 7.4
CREST (50% mask) 93.24 50.69 23.08 0.66 193.9 81.23 61.96 30.53 0.41 7.4

Table 4.1: Intrinsic evaluation of counterfactuals generated by various methods. Validity is computed as the accuracy of an
off-the-shelf RoBERTa-base classifier in relation to the gold counterfactual label (not available for PWWS and PolyJuice);
fluency is determined by the perplexity score given by GPT-2 large; diversity is computed with self-BLEU; and closeness is
reported by the (normalized) edit distance to the factual input. In addition, we report average number of tokens in the input.
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Figure 4.3: Sparsity analysis of CREST on IMDB with different budget percentages. The original curves show the
performance of CREST without any changes, while the augmented and finetuned curves show the performance of CREST
when using manually crafted counterfactuals for data augmentation or finetuning, respectively.

by doing so, we not only avoid the computationally expensive binary search procedure, but we also open up

new opportunities: as our masking process is differentiable, we can optimize our masker to enhance the quality

of both the counterfactuals (§4.4.2) and the selected rationales (§4.6.3). We will demonstrate the latter with our

proposed CREST-Rationalization setup (§4.5). All implementation details for the masker and the editor can be

found in §B.2.

4.4 Evaluating CREST Counterfactuals

This section presents an extensive comparison of counterfactuals generated by different methods.

4.4.1 Experimental Setting

Data and evaluation. We experiment with our counterfactual generation framework on two different tasks:

sentiment classification using IMDB (Maas et al., 2011) and natural language inference (NLI) using SNLI (Bow-

man et al., 2015). In sentiment classification, we only have a single input to consider, while NLI inputs consist

of a premise and a hypothesis, which we concatenate to form a single input. To assess the quality of our au-

tomatic counterfactuals, we compare them to manually crafted counterfactuals in the revised IMDB and SNLI

datasets created by Kaushik et al. (2020). More dataset details can be found in §B.1.
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Training. We employ a SPECTRA rationalizer with a T5-small architecture as the masker, and train it for 10

epochs on the full IMDB and SNLI datasets. We also use a T5-small architecture for the editor, and train it for

20 epochs with early stopping, following the same training recipe as MiCE. Full training details can be found

in §B.2.3.

Generation. As illustrated in Figure 4.1, at test time we generate counterfactuals by prepending a contrastive

label to the input and passing it to the editor. For sentiment classification, this means switching between positive

and negative labels. For NLI, in alignment with Dixit et al. (2022), we adopt a refined approach by restricting

the generation of counterfactuals to entailments and contradictions only, therefore ignoring neutral examples,

which have a subtle semantic meaning. In contrast, our predictors were trained using neutral examples, and in

cases where they predict the neutral class, we default to the second-most probable class.

Baselines. We compare our approach with four open-source baselines that generate counterfactuals: PWWS (Ren

et al., 2019), PolyJuice (Wu et al., 2021), CounterfactualGAN (Robeer et al., 2021),2 and MiCE (Ross et al.,

2021). In particular, to ensure a fair comparison with MiCE, we apply three modifications to the original formu-

lation: (i) we replace its RoBERTa classifier with a T5-based classifier (as used in SPECTRA); (ii) we disable its

validity filtering;3 (iii) we report results with and without the binary search procedure by fixing the percentage

of masked tokens.

Metrics. To determine the general validity of counterfactuals, we report the accuracy of an off-the-shelf

RoBERTa-base classifier available in the HuggingFace Hub.4 Moreover, we measure fluency using perplexity

scores from GPT-2 large (Radford et al., 2019) and diversity with self-BLEU (Zhu et al., 2018). Finally, we

quantify the notion of closeness by computing the normalized edit distance to the factual input and the average

number of tokens in the document.

4.4.2 Results

Results are presented in Table 4.1. As expected, manually crafted counterfactuals achieve high validity,

significantly surpassing the chance baseline and establishing a reliable reference point. For IMDB, we find

that CREST outperforms other methods by a wide margin in terms of validity and fluency. At the same time,

CREST’s validity is comparable to the manually crafted counterfactuals, while surprisingly deemed more fluent

by GPT-2. Moreover, we note that our modification of disabling MiCE’s minimality search leads to counterfac-

tuals that are more valid and diverse but less fluent and less close to the original inputs.

For SNLI, this modification allows MiCE to achieve the best overall scores, closely followed by CREST.

However, when controlling for closeness, we observe that CREST outperforms MiCE: at closeness of ∼0.30,

CREST (30% mask) outperforms MiCE with binary search in terms of fluency and diversity. Similarly, at

a closeness of ∼0.40, CREST (50% mask) surpasses MiCE (30% mask) across the board. As detailed in

§B.3, CREST’s counterfactuals are more valid than MiCE’s for all closeness bins lower than 38%. We provide

2Despite many attempts, CounterfactualGAN did not converge on IMDB, possibly due to the long length of the inputs.
3MiCE with binary search uses implicit validity filtering throughout the search process to set the masking percentage.
4mtreviso/roberta-base-imdb, mtreviso/roberta-base-snli.
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Figure 4.4: Human study results for counterfactuals produced manually and automatically by CREST and MiCE on IMDB
(left), SNLI (middle), and overall (right).

examples of counterfactuals produced by CREST and MiCE in Appendix B.6. Finally, we note that CREST is

highly affected by the masking budget, which we explore further next.

Sparsity analysis. We investigate how the number of edits affects counterfactual quality by training maskers

with increasing budget constraints (as described in §4.2.1). The results in Figure 4.3 show that with increasing

masking percentage, generated counterfactuals become less textually similar to original inputs (i.e., less close)

but more valid and fluent. This inverse relationship demonstrates that strict minimality, optimized for in methods

like MiCE, comes with tradeoffs in counterfactual quality, and that the sparsity budget in CREST can be used

to modulate the trade-off between validity and closeness. In Figure 4.3 we also examine the benefit of manually

crafted counterfactuals in two ways: (i) using these examples as additional training data; and (ii) upon having a

trained editor, further fine-tuning it with these manual counterfactuals. The results suggest that at lower budget

percentages, exploiting a few manually crafted counterfactuals to fine-tune CREST can improve the validity of

counterfactuals without harming fluency.

Validity filtering. As previously demonstrated by Wu et al. (2021) and Ross et al. (2022b), it is possible to

filter out potentially disfluent or invalid counterfactuals by passing all examples to a classifier and discarding the

subset with incorrect predictions. In our case, we use the predictor associated with the masker as the classifier.

We found find that applying this filtering increases the validity of IMDB counterfactuals from 75.82 to 86.36

with B = 0.3, and from 93.24 to 97.36 with B = 0.5. For SNLI, validity jumps from 75.45 to 96.39 with

B = 0.3, and from 81.23 to 96.67 with B = 0.5. These results indicate that CREST can rely on its predictor to

filter out invalid counterfactuals, a useful characteristic for doing data augmentation, as we will see in §4.6.2.

4.4.3 Human Study

We conduct a small-scale human study to evaluate the quality of counterfactuals produced by MiCE and

CREST with 50% masking percentage. Annotators were tasked with rating counterfactuals’ validity and nat-

uralness (e.g., based on style, tone, and grammar), each using a 5-point Likert scale. Two fluent English

annotators rated 50 examples from the IMDB dataset, and two others rated 50 examples from SNLI. We also

evaluate manually created counterfactuals to establish a reliable baseline. More details can be found in §B.4.

The study results, depicted in Figure 4.4, show that humans find manual counterfactuals to be more valid and

natural compared to automatically generated ones. Furthermore, CREST’s counterfactuals receive higher ratings

for validity and naturalness compared to MiCE, aligning with the results obtained from automatic metrics.

Interestingly, counterfactuals for SNLI appear more valid and natural compared to those for IMDB, highlighting

the challenge in generating counterfactuals for long movie reviews.
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4.5 CREST-Rationalization

Now that we have a method that generates high-quality counterfactual examples, a natural step is to use these

examples for data augmentation. However, vanilla data augmentation does not take advantage of the paired

structure of original/contrastive examples and instead just treats them as individual datapoints. In this section,

we present CREST’s second component, CREST-Rationalization (illustrated in Figure 4.2), which leverages the

relationships between factual and counterfactual inputs through a SPECTRA rationalizer with an agreement

regularization strategy, described next.

4.5.1 Linking Counterfactuals and Rationales

We propose to incorporate counterfactuals into a model’s functionality by taking advantage of the fully

differentiable rationalization setup. Concretely, we decompose a rationalizer into two flows, as depicted in

Figure 4.2: a factual flow that receives factual inputs x and outputs a factual prediction ŷ, and a counterfactual

flow that receives counterfactual inputs x̃ and should output a counterfactual prediction ỹ ̸= ŷ. As a by-product

of using a rationalizer, we also obtain a factual rationale z ∈ {0, 1}n for x and a counterfactual rationale

z̃ ∈ {0, 1}m for x̃, where n = |x| and m = |x̃|.

Training. Let Θ = {ϕ, γ, θ} represent the trainable parameters of a rationalizer (defined in §4.2.1). We

propose the following loss function:

L(Θ) = Lf (yf , ŷ(Θ)) + αLc(yc, ỹ(Θ)) (4.3)

+ λΩ(z(Θ), z̃(Θ)),

where Lf (·) and Lc(·) represent cross-entropy losses for the factual and counterfactual flows, respectively, and

Ω(·) is a novel penalty term to encourage factual and counterfactual rationales to focus on the same positions,

as defined next. α ∈ R and λ ∈ R are hyperparameters.

Agreement regularization. To produce paired rationales for both the factual and counterfactual flows, we

incorporate regularization terms into the training of a rationalizer to encourage the factual explainer to produce

rationales similar to those originally generated by the masker z⋆, and the counterfactual explainer to produce

rationales that focus on the tokens modified by the editor z̃⋆. We derive the ground truth counterfactual ra-

tionale z̃⋆ by aligning x to x̃ and marking tokens that were inserted or substituted as 1, and others as 0. The

regularization terms are defined as:

Ω(z, z̃) = ∥z(Θ)− z⋆∥22 + ∥z̃(Θ)− z̃⋆∥22 . (4.4)

To allow the counterfactual rationale z̃ to focus on all important positions in the input, we adjust the bud-

get for the counterfactual flow based on the length of the synthetic example produced by the counterfactual

generator. Specifically, we multiply the budget by a factor of ∥z̃⋆∥0

∥z⋆∥0
.
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Setup IMDB rIMDB cIMDB RotTom SST-2 Amazon Yelp

F 91.1 ± 0.3 91.4 ± 0.8 88.5 ± 0.9 76.5 ± 1.6 79.8 ± 1.6 86.0 ± 0.7 88.5 ± 0.7

With data augmentation:
F + CH 90.9 ± 0.5 92.9 ± 0.9 90.4 ± 1.6 76.6 ± 1.5 80.7 ± 1.3 86.3 ± 1.0 89.1 ± 1.2

F + CS,V 91.0 ± 0.2 91.2 ± 1.0 89.3 ± 0.8 76.8 ± 0.9 79.3 ± 0.3 85.2 ± 0.9 88.0 ± 1.0

F + CS 90.8 ± 0.2 91.6 ± 1.3 89.2 ± 0.4 76.7 ± 1.0 80.6 ± 0.6 86.4 ± 0.6 89.1 ± 0.5

With agreement regularization:
F & CS,V 90.7 ± 0.5 92.2 ± 0.7 88.9 ± 1.0 76.3 ± 1.4 80.2 ± 1.3 86.3 ± 0.7 88.9 ± 0.7

F & CS 91.2 ± 0.5 92.9 ± 0.5 89.7 ± 1.1 77.3 ± 2.3 81.1 ± 2.4 86.8 ± 0.8 89.3 ± 0.7

Table 4.2: Accuracy of SPECTRA trained on IMDB and evaluated on in-domain, contrast, and out-of-domain datasets. We
present mean and std. values across five random seeds. Values in bold: top results; underlined: second-best.

4.6 Exploiting Counterfactuals for Training

In this section, we evaluate the effects of incorporating CREST-generated counterfactuals into training by

comparing a vanilla data augmentation approach with our CREST-Rationalization approach. We compare how

each affects model robustness (§4.6.2) and interpretability (§4.6.3).

4.6.1 Experimental Setting

We use the IMDB and SNLI datasets to train SPECTRA rationalizers with and without counterfactual exam-

ples, and further evaluate on in-domain, contrast and out-of-domain (OOD) datasets. For IMDB, we evaluate on

the revised IMDB, contrast IMDB, RottenTomatoes, SST-2, Amazon Polarity, and Yelp. For SNLI, we evaluate

on the Hard SNLI, revised SNLI, break, MultiNLI, and Adversarial NLI. Dataset details can be found in §B.1.

To produce CREST counterfactuals, which we refer to as “synthetic”, we use a 30% masking budget as it pro-

vides a good balance between validity, fluency, and closeness (cf. Figure 4.3). We tune the counterfactual loss

(α) and agreement regularization (λ) weights on the dev set. We report results with α = 0.01 and λ = 0.001

for IMDB, and α = 0.01 and λ = 0.1 for SNLI.

4.6.2 Robustness Results

Tables 4.2 and 4.3 show results for counterfactual data augmentation and agreement regularization for

IMDB and SNLI, respectively. We compare a standard SPECTRA trained on factual examples (F ) with other

SPECTRA models trained on augmentated data from human-crafted counterfactuals (F + CH ) and synthetic

counterfactuals generated by CREST (F + CS), which we additionally post-process to drop invalid exam-

ples (F + CS,V ).

Discussion. As shown in Table 4.2, CREST-Rationalization (F & CS) consistently outperforms vanilla coun-

terfactual augmentation (F + CS) on all sentiment classification datasets. It achieves the top results on the

full IMDB and on all OOD datasets, while also leading to strong results on contrastive datasets—competitive

with manual counterfactuals (F + CH ). When analyzing the performance of CREST-Rationalization trained

on a subset of valid examples (F & CS,V ) versus the entire dataset (F & CS), the models trained on the entire

dataset maintain a higher level of performance across all datasets. However, when using counterfactuals for

data augmentation, this trend is less pronounced, especially for in-domain and contrastive datasets. In §B.5,
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Setup SNLI SNLI-h rSNLI break MNLI-m MNLI-mm ANLI

F 86.6 ± 0.2 73.7 ± 0.2 71.1 ± 0.8 69.5 ± 1.5 64.6 ± 1.1 65.9 ± 0.9 32.6 ± 0.7

With data augmentation:
F + CH 86.6 ± 0.3 74.9 ± 1.1 72.4 ± 0.3 70.1 ± 1.9 64.2 ± 0.9 65.8 ± 0.9 31.8 ± 0.4

F + CS,V 86.5 ± 0.3 75.8 ± 1.2 71.8 ± 1.0 69.1 ± 2.0 64.4 ± 0.3 65.9 ± 0.4 32.2 ± 0.2

F + CS 86.6 ± 0.3 74.7 ± 1.1 71.6 ± 0.8 71.2 ± 1.4 64.5 ± 0.4 66.4 ± 0.6 32.2 ± 1.0

With agreement regularization:
F & CS,V 86.8 ± 0.1 75.3 ± 0.8 66.8 ± 0.7 68.2 ± 2.1 64.6 ± 0.7 66.1 ± 0.6 32.8 ± 0.6

F & CS 86.6 ± 0.1 75.5 ± 1.3 67.0 ± 1.3 69.9 ± 1.7 64.2 ± 1.1 66.0 ± 0.7 32.5 ± 0.5

Table 4.3: Accuracy of SPECTRA trained on SNLI and evaluated on in-domain, contrast, and out-of-domain datasets. We
present mean and std. values across five random seeds. Values in bold: top results; underlined: second-best.

we explore the impact of the number of augmented examples on results and find that, consistent with previous

research (Huang et al., 2020; Joshi and He, 2022), augmenting the training set with a small portion of valid and

diverse synthetic counterfactuals leads to more robust models, and can even outweigh the benefits of manual

counterfactuals.

Examining the results for NLI in Table 4.3, we observe that both counterfactual augmentation and agreement

regularization interchangeably yield top results across datasets. Remarkably, in contrast to sentiment classifica-

tion, we achieve more substantial improvements with agreement regularization models when these are trained

on valid counterfactuals, as opposed to the full set.

Overall, these observations imply that CREST-Rationalization is a viable alternative to data augmentation

for improving model robustness, especially for learning contrastive behavior for sentiment classification. In the

next section, we explore the advantages of CREST-Rationalization for improving model interpretability.

4.6.3 Interpretability Analysis

In our final experiments, we assess the benefits of our proposed regularization method on model inter-

pretability. We evaluate effects on rationale quality along three dimensions: plausibility, forward simulability,

and counterfactual simulability.

Plausibility. We use the MovieReviews (DeYoung et al., 2020) and the e-SNLI (Camburu et al., 2018) datasets

to study the human-likeness of rationales by matching them with human-labeled explanations and measuring

their AUC, which automatically accounts for multiple binarization levels.5

Forward simulability. Simulability measures how often a human agrees with a given classifier when pre-

sented with explanations, and many works propose different variants to compute simulability scores in an au-

tomatic way (Doshi-Velez and Kim, 2017; Treviso and Martins, 2020; Hase et al., 2020; Pruthi et al., 2022).

Here, we adopt the framework proposed by Treviso and Martins (2020), which views explanations as a message

between a classifier and a linear student model, and determines simulability as the fraction of examples for

which the communication is successful. In our case, we cast a SPECTRA rationalizer as the classifier, use its

rationales as explanations, and train a linear student on factual examples of the IMDB and SNLI datasets. High

simulability scores indicate more understandable and informative explanations.

5We determine the explanation score for a single word by calculating the average of the scores of its word pieces.
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Sentiment Classification Natural Language Inference

Setup Plausibility F. sim. C. sim. Plausibility F. sim. C. sim.

F 0.6733 ± 0.02 91.70 ± 0.92 81.18 ± 2.79 0.7735 ± 0.00 59.26 ± 0.41 70.01 ± 0.44

With data augmentation:
F + CH 0.6718 ± 0.04 91.44 ± 1.46 80.53 ± 4.17 0.7736 ± 0.01 59.51 ± 0.86 69.90 ± 0.57

F + CS 0.6758 ± 0.01 91.68 ± 0.59 84.54 ± 1.09 0.7779 ± 0.00 59.54 ± 0.08 70.76 ± 0.54

With agreement regularization:
F & CS 0.6904 ± 0.02 91.93 ± 0.83 86.43 ± 1.56 0.7808 ± 0.00 59.31 ± 0.20 70.69 ± 0.29

Table 4.4: Interpretability analysis of rationalizers trained with CREST-generated counterfactuals, either with data augmen-
tation or agreement regularization. Plausibility represents matching with human rationales, whereas F. sim. and C. sim.
represent forward and counterfactual simulability. Bold: top results; underlined: second-best.

Counterfactual simulability. Building on the manual simulability setup proposed by Doshi-Velez and Kim

(2017), we introduce a new approach to automatically evaluate explanations that interact with counterfactuals.

Formally, let C be a classifier that when given an input x produces a prediction ŷ and a rationale z. Moreover,

let G be a pre-trained counterfactual editor, which receives x and z and produces a counterfactual x̃ by infilling

spans on positions masked according to z (e.g., via masking). We define counterfactual simulability as follows:

1

N

N∑
n=1

[[C(xn) ̸= C(G(xn ⊙ zn))]], (4.5)

where [[·]] is the Iverson bracket notation. Intuitively, counterfactual simulability measures the ability of a

rationale to change the label predicted by the classifier when it receives a contrastive edit with infilled tokens by

a counterfactual generator as input. Therefore, a high counterfactual simulability indicates that the rationale z

focuses on the highly contrastive parts of the input.

Results. The results of our analysis are shown in Table 4.4. We observe that plausibility can substantially

benefit from synthetic CREST-generated counterfactual examples, especially for a rationalizer trained with our

agreement regularization, which outperforms other approaches by a large margin. Additionally, leveraging

synthetic counterfactuals, either via data augmentation or agreement regularization, leads to a high forward

simulability score, though by a smaller margin—within the standard deviation of other approaches. When

looking at counterfactual simulability, we note that models that leverage CREST counterfactuals consistently

lead to better rationales. In particular, agreement regularization leads to strong results on both tasks while also

producing more plausible rationales, showing the efficacy of CREST-Rationalization in learning contrastive

behavior.

4.7 Related Works

Generating counterfactuals. Existing approaches to generating counterfactuals for NLP use heuristics (Ren

et al., 2019; Ribeiro et al., 2020), leverage plug-and-play approaches to controlled generation (Madaan et al.,

2021), or, most relatedly, fine-tune language models to generate counterfactuals (Wu et al., 2021; Ross et al.,

2021, 2022b; Robeer et al., 2021). For instance, PolyJuice (Wu et al., 2021) finetunes a GPT-2 model on

human-crafted counterfactuals to generate counterfactuals following pre-defined control codes, while Counter-

factualGAN (Robeer et al., 2021) adopts a GAN-like setup. We show that CREST-Generation outperforms both
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methods in terms of counterfactual quality. Most closely related is MiCE (Ross et al., 2021), which also uses a

two-stage approach based on a masker and an editor to generate counterfactuals. Unlike MiCE, we propose to

relax the minimality constraint and generate masks using selective rationales rather than gradients, resulting not

only in higher-quality counterfactuals, but also in a fully-differentiable set-up that allows for further optimiza-

tion of the masker. Other recent work includes Tailor (Ross et al., 2022b), a semantically-controlled generation

system that requires a human-in-the-loop to generate counterfactuals, as well as retrieval-based and prompting

approaches such as RGF (Paranjape et al., 2022) and CORE (Dixit et al., 2022).

Training with counterfactuals. Existing approaches to training with counterfactuals predominantly lever-

age data augmentation. Priors works have explored how augmenting with both manual (Kaushik et al., 2020;

Khashabi et al., 2020; Huang et al., 2020; Joshi and He, 2022) and automatically-generated (Wu et al., 2021;

Ross et al., 2022b; Dixit et al., 2022) counterfactuals affects model robustness. Unlike these works, CREST-

Rationalization introduces a new strategy for training with counterfactuals that leverages the paired structure

of original and counterfactual examples, improving model robustness and interpretability compared to data

augmentation. Also related is the training objective proposed by Gupta et al. (2021) to promote consistency

across pairs of examples with shared substructures for neural module networks, and the loss term proposed by

Teney et al. (2020) to model the factual-counterfactual paired structured via gradient supervision. In contrast,

CREST can be used to generate paired examples, can be applied to non-modular tasks, and does not require

second-order derivatives.

Rationalization. There have been many modifications to the rationalization setup to improve task accuracy

and rationale quality. Some examples include conditioning the rationalization on pre-specified labels (Yu et al.,

2019), using an information-bottleneck formulation to ensure informative rationales (Paranjape et al., 2020),

training with human-created rationales (Lehman et al., 2019), and replacing stochastic variables with determin-

istic mappings (Guerreiro and Martins, 2021). We find that CREST-Rationalization, which is fully unsupervised,

outperforms standard rationalizers in terms of model robustness and quality of rationales.

4.8 Conclusions and Future Works

We proposed CREST, a joint framework for selective rationalization and counterfactual text generation that

is capable of producing valid, fluent, and diverse counterfactuals, while being flexible for controlling the amount

of perturbations. We have shown that counterfactuals can be successfully incorporated into a rationalizer, either

via counterfactual data augmentation or agreement regularization, to improve model robustness and rationale

quality. Our results demonstrate that CREST successfully bridges the gap between selective rationales and

counterfactual examples, addressing the limitations of existing methods and providing a more comprehensive

view of a model’s predictions.

One possibility to improve CREST is to replace its T5-based generator by more recent and larger language

models, such as Flan-T5 (Chung et al., 2022; Longpre et al., 2023). Additionally, there are alternative methods

to guide the generation of counterfactuals from highlight explanations, such as prompting language models with

high-level or explicit information about which words should be perturbed.
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A bottleneck in transformer architectures is their quadratic complexity with respect to the input sequence,

which has motivated a body of work on efficient sparse approximations to softmax. An alternative path, used

by α-entmax transformers, consists of having built-in exact sparse attention (Correia et al., 2019). As we also

showed in Chapter 3, the selective nature of α-entmax brings interpretability benefits. However, computing

sparse attention in entmax transformers still requires a quadratic cost.

In this chapter, we propose Sparsefinder, in which a simple student model is trained to identify, a priori,

the sparsity pattern of entmax attention of a large teacher model—without actually computing it. Sparsefinder

is designed to reduce computational cost while preserving the interpretable behavior of learned attention heads,

which were shown to capture specialized linguistic knowledge (Voita et al., 2019; Correia et al., 2019; Raganato

et al., 2020). This scheme resembles our previous simulability framework introduced in Chapter 3; however,

here we teach Sparsefinder to simulate the attention patterns of the teacher, rather than its predictions.

We experiment with three variants of Sparsefinder, based on distances, quantization, and clustering, on two

tasks: machine translation (attention in the decoder) and masked language modeling (encoder-only). Our work

provides a new angle to study model efficiency by doing extensive analysis of the tradeoff between the sparsity

and recall of the predicted attention graph. This allows for a detailed comparison between different models and

may guide future benchmarks for sparse models.

This chapter is based on Treviso et al. (2022).

5.1 Motivation

Transformer-based architectures have achieved remarkable results in many NLP tasks (Vaswani et al., 2017;

Devlin et al., 2019; Brown et al., 2020). However, they also bring important computational and environmen-

tal concerns, caused by their quadratic time and memory computation requirements with respect to the se-

quence length. This comes in addition to the difficulty of interpreting its inner workings, caused by their

over-parameterization and large number of attention heads.

There is a large body of work developing ways to “sparsify” the computation in transformers, either by

imposing local or fixed attention patterns (Child et al., 2019; Tay et al., 2020; Zaheer et al., 2020), by applying

low-rank kernel approximations to softmax (Wang et al., 2020; Choromanski et al., 2021), or by learning which

queries and keys should be grouped together (Kitaev et al., 2019; Roy et al., 2021). Most of the existing work

seeks to approximate softmax-based attention by ignoring the (predicted) tails of the distribution, which can

lead to performance degradation. An exception is transformers with entmax-based sparse attention (Correia

et al., 2019), a content-based approach which is natively sparse; however, this approach still requires a quadratic

computation to determine the sparsity pattern, failing to take computational advantage of attention sparsity.

In this work, we propose Sparsefinder, which fills the gap above by making entmax attention efficient

(§5.4). Namely, we investigate three methods to predict the sparsity pattern of entmax without having to com-

pute it: one based on metric learning, which is still quadratic but with a better constant (§5.4.3), one based on

quantization (§5.4.4), and another one based on clustering (§5.4.5). In all cases, the predictors are trained offline

on ground-truth sparse attention graphs from an entmax transformer, seeking high recall in their predicted edges

without compromising the total amount of sparsity. Figure 5.1 illustrates our method.

To evaluate the effectiveness of our method across different scenarios, we perform experiments on two NLP
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Figure 5.1: (a) Extract sparse attention graphs from a pretrained α-entmax transformer; (b) Project query and key vectors
to a smaller and appropriated space such that similar points are likely to fall in the same vicinity; (c) Additionally, we
can combine window and global patterns (green blocks) with the learned pattern (yellow blocks) to increase the recall in
recovering ground-truth edges from the sparse graph at the top (starred blocks).

tasks, encompassing encoder-only and decoder-only configurations: machine translation (MT, §5.5) and masked

language modeling (MLM, §5.6). We compare our method with four alternative solutions based on efficient

transformers: Longformer (Beltagy et al., 2020), Bigbird (Zaheer et al., 2020), Reformer (Kitaev et al., 2020),

and Routing Transformer (Roy et al., 2021), doing an extensive analysis of the trade-off between sparsity-recall

and sparsity-accuracy. We complement these experiments by analyzing qualitatively what is selected by the

different attention heads at the several layers and represented in different clusters/buckets.

Overall, our contributions are:1

• We propose a simple method that exploits learnable sparsity patterns to efficiently compute multi-head

attention (§5.4).

• We do an extensive analysis of the trade-off between sparsity-recall and sparsity-accuracy in MT (§5.5)

and MLM (§5.6), showing that there is a sweet spot that can be used to design efficient methods (§5.5,§5.6).

• We perform experiments on two tasks that span two disclosed scenarios of using transformers in NLP:

MT (§5.5), and masked LM (§5.6).

• We analyze qualitatively what is selected by the different attention heads at the several layers and repre-

sented in different clusters/buckets.

5.2 Related Work

Interpreting multi-head attention. Several works analyze the functionalities learned by different attention

heads, such as positional and local context patterns (Raganato and Tiedemann, 2018; Voita et al., 2019). Build-

ing upon prior work on sparse attention mechanisms (Peters et al., 2019), Correia et al. (2019) constrain the

1Our code is public available at: https://github.com/deep-spin/sparsefinder
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attention heads to induce sparse selections individually for each head, bringing interpretability without post-

hoc manipulation. Related approaches include the explicit sparse transformer (Zhao et al., 2019) and rectified

linear attention (Zhang et al., 2021), which drops the normalization constraint. Raganato et al. (2020) show

that it is possible to fix attention patterns based on previous known behavior (e.g. focusing on previous token)

while improving translation quality. However, a procedure that exploits learnable sparsity patterns to accelerate

multi-head attention is still missing.

Low-rank softmax approximations. Methods based on low-rank approximation to the softmax such as Lin-

earized Attention (Katharopoulos et al., 2020), Linformer (Wang et al., 2020), and Performer (Choromanski

et al., 2021) reduce both speed and memory complexity of the attention mechanism from quadratic to linear,

but also hardens interpretability since its scores are not computed explicitly. On the other hand, methods that

focus on defining or inducing sparse patterns provide interpretable alignments and also have performance gains

in terms of speed and memory.

Fixed attention patterns. Among fixed pattern methods, Sparse Transformer (Child et al., 2019) and Long-

Former (Beltagy et al., 2020) attend to fixed positions by using strided/dilated sliding windows. BigBird uses

random and two fixed patterns (global and window) to build a block sparse matrix representation (Zaheer et al.,

2020), taking advantage of block matrix operations to accelerate computations in GPUs. In contrast, we replace

the random pattern by a learned pattern that mimics pretrained α-entmax sparse attention graphs.

Learnable attention patterns. Learnable pattern methods usually have to deal with assignment decisions

within the multi-head attention mechanism. Clustered Attention (Vyas et al., 2020) groups query tokens into

clusters and compute dot-products only with centroids. Reformer (Kitaev et al., 2020) uses locality-sensitive

hashing to efficiently group tokens in buckets. More similar to our work, Routing Transformer (Roy et al., 2021)

clusters queries and keys with online k-means and compute dot-products over the top-k cluster points. Some

queries and keys are discarded due to this filtering, which affects the overall recall of the method (as we show

in §5.5 and §5.6).

5.3 Background

The main component of transformers is the multi-head attention mechanism (Vaswani et al., 2017), which

responsible for contextualizing the information within and across input sentences (see §2.1.3 for a complete

overview of the transformer architecture). However, in order to use the multi-head attention mechanism we

need to compute the matrix multiplication QK⊤ ∈ Rn×m used in the scaled dot-product operation in Eq. 2.6,

which costs O(nmd) time and can be impractical when n and m are large. Many approaches, discussed in §5.2,

approximate the attention matrix by ignoring entries far from the main diagonal or computing only some blocks

of this matrix, with various heuristics. By doing so, the result will be an approximation of the softmax attention.

This is because the original softmax-based attention is dense, i.e., it puts some probability mass on all tokens –

not only a computational disadvantage, but also making interpretation harder, as it has been observed that only

a small fraction of attention heads capture relevant information (Voita et al., 2019).
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An alternative to softmax is the α-entmax transformation (Peters et al., 2019; Correia et al., 2019), which

leads to sparse patterns directly, without any approximation (we describe α-entmax in detail in §2.1.2). In

this work, we use α = 1.5, which works well in practice and has a specialized fast algorithm (Peters et al.,

2019). However, while sparse attention improves interpretability and head diversity when compared to dense

alternatives (Correia et al., 2019), the learned sparsity patterns can not be trivially exploited to reduce the

quadratic burden of self-attention, since we still need to compute dot-products between all queries and keys

(QK⊤) before applying the α-entmax transformation. In the next section (§5.4), we propose a simple method

that learns to identify these sparsity patterns beforehand, avoiding the full matrix multiplication.

5.4 Sparsefinder

We now propose our method to extract sparse attention graphs and learn where to attend by exploiting a

special property of α-entmax: sparse consistency (§5.4.1). We design three variants of Sparsefinder to that end,

based on metric learning (§5.4.3), quantization (§5.4.4), and clustering (§5.4.5).

5.4.1 Attention graph and sparse consistency

For each attention head h, we define its attention graph as Gh = {(qi,kj) | pi,j > 0}, a bipartite graph

connecting query and key pairs qi,kj ∈ Rd for which the α-entmax probability pi,j is nonzero. An example of

attention graph is shown in Figure 5.1. We denote by |Gh| the total size of an attention graph, i.e., its number of

edges. With α-entmax with α = 1.5 we typically have |Gh| ≪ nm. In contrast, softmax attention always leads

to a complete graph, |Gh| = nm.

Problem statement. Our goal is to build a model – which we call Sparsefinder – that predicts Ĝh ≈ Gh

without having to perform all pairwise comparisons between queries and keys. This enables reducing the

complexity of evaluating Eq. 2.6 from O(nmd) to O(|Ĝh|d), effectively taking advantage of the sparsity of α-

entmax. In order to learn such model, we first extract a dataset of sparse attention graphs {Gh} from a pretrained

entmax-based transformer (acting as a teacher). Then, the student learns where to pay attention based on this

information. This procedure is motivated by the following sparse-consistency property of α-entmax:

Proposition 1 (Sparse-consistency property). Let b be a binary vector such that bj = 1 if p⋆j > 0, and bj = 0

otherwise. For any binary mask vector m “dominated” by b (i.e. m⊙ b = b), we have

α-entmax(z) = α-entmax(z|m), (5.1)

where zj |m = zj if mj = 1 and −∞ if mj = 0.

Proof. From the definition of z|m and from Eq. 2.5, we have that{
zj |m = zj >

τ(z)
α−1 if p∗j > 0

zj |m ≤ zj ≤ τ(z)
α−1 if p∗j = 0.

(5.2)

We first prove that τ(z|m) = τ(z). From the definition of τ(z) we have that
∑

j [(α− 1)zj − τ(z)]
1/α−1

+ = 1.

Plugging the (in)equalities from Eq. 5.2, we thus have

1 =
∑
j

[(α− 1)zj − τ(z)]
1/α−1

+ =
∑
j

[(α− 1)zj |m − τ(z)]
1/α−1

+ . (5.3)
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Since τ(z) satisfies the second equation – which is the condition that defines τ(z|m) – we thus conclude that

τ(z|m) = τ(z). Combining the results in Eq. 5.2 and Eq. 5.3, we see that the supports of α-entmax(z)

and α-entmax(z|m) are the same and so are the thresholds τ , and therefore from Eq. 2.5 we conclude that

α-entmax(z|m) = α-entmax(z).

This property ensures that, if Ĝh is such that Gh ⊆ Ĝh, then we obtain exactly the same result as with the

original entmax attention. Therefore, we are interested in having high recall,

recall(Ĝh;Gh) =
|Ĝh ∩ Gh|

|Gh|
, (5.4)

meaning that our method is nearly exact, and high sparsity,

sparsity(Ĝh) = 1− |Ĝh|
nm

, (5.5)

which indicates that computation can be made efficient.2 Although a high sparsity may indicate that many

computations can be ignored, converting this theoretical result into efficient computation is not necessarily trivial

and potentially hardware-dependent. In this work, rather than proposing a practical computational efficient

method, we focus on showing that such methods do exist and that they can be designed to outperform fixed and

learned pattern methods while retaining a high amount of sparsity when compared to the ground-truth graph.

Our strategies. We learn the student model to predict Ĝh ≈ Gh by taking inspiration from the Reformer

model (Kitaev et al., 2020) and from the Routing Transformer (Roy et al., 2021). Formally, we define a set of

B buckets, B = {1, . . . , B}, and learn functions fq, fk : Rd → 2B \ {∅}, which assign a query or a key to one

or more buckets. We will discuss in the sequel different design strategies for the functions fq, fk. Given these

functions, the predicted graph is:

Ĝh = {(qi,kj) | fq(qi) ∩ fk(kj) ̸= ∅}, (5.6)

that is, an edge is predicted between qi and kj iff they are together in some bucket.

We present three strategies, one based on distance-based pairing (§5.4.3), one based on quantization (§5.4.4)

and another one on clustering (§5.4.5). All strategies require as a first step learning a metric that embeds the

graph (projecting queries and keys) into a lower-dimensional space Rr with r ≪ d, such that positive query-key

pairs are close to each other, and negative pairs are far apart.

5.4.2 Learning projections

According to the α-entmax sparse-consistency property, in order to get a good approximation of Gh, we

would like that fq and fk produce a graph Ĝh that maximizes recall, defined in Equation 5.4. However, maxi-

mizing recall in this setting is difficult since we do not have ground-truth bucket assignments. Instead, we recur

to a contrastive learning approach by learning projections via negative sampling, which is a simpler and more

scalable than constrained clustering approaches (Wagstaff et al., 2001; de Amorim, 2012).

For each head, we start by projecting the original query and key q,k ∈ Rd vectors into lower dimensional

vectors q′,k′ ∈ Rr such that r ≪ d. In practice, we use a simple head-wise linear projection for all queries and
2For the decoder self-attention the denominator in Equation 5.5 becomes n(n+ 1)/2 due to “causal” masking.
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keys gθ : Rd → Rr. To learn the parameters of the projection layer we minimize a hinge loss with margin ω for

each head h:

Lθ(Gh) =
[
ω + ∥q′ − k′

P∥22 − ∥q′ − k′
N∥22
]
+
, (5.7)

where (q′,k′
P) ∈ Gh is a positive pair, (q′,k′

N) /∈ Gh is a negative pair sampled uniformly at random, and [·]+ is

the positive part (ReLU) function. In words, we want the distance between a query vector to negative pairs to be

larger than the distance to positive pairs by a margin ω. This approach can also be seen as a weakly-supervised

learning problem, where the goal is to push dissimilar points away while keeping similar points close to each

other (Xing et al., 2002; Weinberger and Saul, 2009; Bellet et al., 2015).

5.4.3 Distance-based pairing

To take advantage of the proximity of data points on the embedded space, we first propose a simple method

to connect query and key pairs whose Euclidean distance is less than a threshold t, i.e. Ĝh = {(qi,kj) |

∥q′
i − k′

j∥2 ≤ t}. Although this method also requires O(n2) computations, it is more efficient than a vanilla

transformer since it reduces computations by a factor of d/r by using the learned projections. This method is

also useful to probe the quality of the embedded space learned by the projections, since the performance of our

other methods will be contingent on it.

5.4.4 Buckets through quantization

Our second strategy quantizes each dimension 1, . . . , r of the lower-dimensional space into β bins, placing

the queries and keys into the corresponding buckets (B = rβ buckets in total). This way, each qi and kj will be

placed in exactly r buckets (one per dimension). If qi and kj are together in some bucket, Sparsefinder predicts

that (qi,kj) ∈ Ĝh. Note that for this quantization strategy no learning is needed, only the hyperparameter β and

the binning strategy need to be chosen. We propose a fixed-size binning strategy: divide each dimension into

β bins such that all bins have exactly ⌈n/β⌉ elements. In practice, we append padding symbols to the input to

ensure that bins are balanced.

5.4.5 Buckets through clustering

The clustering strategy uses the low-dimensional projections and runs a clustering algorithm to assign qi

and kj to one or more clusters. In this case, each cluster corresponds to a bucket. In our work, we employed

k-means to learn B centroids {c1, . . . , cB}, where each cb ∈ Rr, over a small portion of the training set. This

strategy is similar to the Routing Transformer’s online k-means (Roy et al., 2021), but with two key differences:

(a) our clustering step is applied offline; (b) we assign points to the top-k closest centroids rather than assigning

the closest top-k closest points to each centroid, ensuring that all queries are assigned to a cluster.3 At test time,

we use the learned centroids to group queries and keys into k clusters each:

fq(qi) = arg top-k
1≤b≤B

−∥qi − cb∥22, (5.8)

fk(kj) = arg top-k
1≤b≤B

−∥kj − cb∥22, (5.9)

3The difference relies on the dimension on which the top-k operation is applied. Routing Transformer applies top-k on the input
dimension, possibly leaving some queries unattended, whereas Sparsefinder applies on the centroids dimension, avoiding this problem.
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where the arg top-k operator returns the indices of the kth largest elements. As in the quantization-based ap-

proach, queries and keys will attend to each other, i.e., Sparsefinder predicts (qi,kj) ∈ Ĝh if they share at least

one cluster among the k closest ones. Smaller values of k will induce high sparsity graphs, whereas a larger k

is likely to produce a more dense graph but with a higher recall.

5.4.6 Computational cost

Let L be the maximum number of elements in a bucket. The time and memory cost of bucketed atten-

tion computed through quantization or clustering is O(BL2). With balanced buckets, we get a complex-

ity of O(n
√
n) (Kitaev et al., 2020). Although this cost is sub-quadratic, leveraging the sparse structure of

Ĝh in practice is challenging, since it might require specialized hardware or kernels. In general, we have

|Ĝh| =
∑B

b=1 nbmb ≪ nm, where nb and mb are the number of queries and keys in each bucket, since we

have small complete bipartite graphs on each bucket. Instead of viewing quadratic methods only in light of

their performance, we adopt an alternative view of assessing the tradeoff of these methods in terms of sparsity

and recall of their approximation Ĝh. This offers a theoretical perspective to the potential performance of each

approximation on downstream tasks, helping to find the best approximations for a desired level of sparsity.

5.4.7 Combining learned and fixed patterns

As pointed out in prior work (Voita et al., 2019), several attention heads rely strongly in local patterns or

prefer to attend to a particular position, more promimently in initial layers. Therefore, we take inspiration from

the Longformer (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020) and combine learned sparse patterns

with window and global patterns by adding connections in the predicted graph Ĝh to improve the recall of all

methods. Figure 5.1 illustrates how these patterns are combined in the last step. The inclusion of these patterns

offer a complementary analysis to the pattern learned by bucketing-based methods.

5.5 Experiments: Machine Translation

Setup. We pretrain a transformer-large model (6 layers, 12 heads) on the Paracrawl dataset (Esplà et al.,

2019). Next, we finetune it with α-entmax, fixing α = 1.5 for all heads, on EN→DE and EN→FR language

pairs from IWSLT17 (Cettolo et al., 2017). We use the 2011-2014 sets as validation data and the 2015 set as test

data. We encode each word using byte pair encoding (BPE, Sennrich et al. 2016) with a joint segmentation of

32k merges. As Vaswani et al. (2017), we finetune our models using the Adam optimizer with an inverse square

root learning rate scheduler, with an initial value of 5 × 10−4 and a linear warm-up in the first 4000 steps. We

evaluate translation quality with sacreBLEU (Post, 2018). Training details, hyperparameters, and data statistics

are described in §C.1.1.

Learning projections. To learn projections for queries and keys (§5.4.2), we randomly selected 10K long

instances (n > 20 tokens) from the training set and extracted the α-entmax attention graphs Gh from the

decoder self-attention for each head. This led to an average of 8M and 9M positive pairs (qi,kj) per layer for

EN→DE and EN→FR, respectively. We use 10% of this set as validation data. In practice, due to the small
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number of parameters for each head (only 4,160), a single epoch with Adam was sufficient to optimize the loss

in Eq. 5.7. Hyperparameters and training details are set in §C.1.2.

Qualitative analysis. Using this subset of 10K samples, we investigate the sparsity-recall tradeoff of the

clustering and quantization variants as the number of buckets varies, comparing them with Longformer, Big-

Bird, Reformer, Routing Transformer, and a simple window baseline, which connects query and key pairs

within a sliding window. To better see what each layer and head captures, we show examples for selected

layers and heads in Figure 5.2 varying the number of buckets B ∈ {2, 4, 6, 8, 10, 12} for bucket-based meth-

ods, the threshold t ∈ {0.5, 1.0, 1.5, 2.0, 2.5} for the distance-based method, and the window size within

{0, 1, 3, 5, 7, 9, 11, 15, 19, 23, 27} for the window baseline. The tradeoff curves for all heads and layers can

be consulted in §C.1.2. We note that heads and layers exhibit specialized behavior, confirming the findings of

Figure 5.2: Examples of the sparsity-recall tradeoff on MT for different layers and heads. Shown are several variants of
Sparsefinder, the Routing Transformer, and a window-level baseline. The vertical line indicates the gold sparsity obtained
by the full entmax transformer.

Voita et al. (2019) and Correia et al. (2019). For instance, the first layer seems to focus mostly on local content,

since they tend to have high sparsity and the window baseline performs well, whereas the attention of last layers

are more spread. The overall findings from this analysis suggest that distance and cluster-based methods outper-

form quantization-based methods, and that among the cluster-based methods, Sparsefinder with top-k ∈ {1, 2}

lead to better sparsity-recall tradeoffs than Routing Transformer, with k = 2. Moreover, all methods achieve

a recall higher than a simple window baseline, without compromising sparsity too much when the number of

buckets is within B ∈ {4, 6, 8}, with 6 being the best choice overall. For this reason, we kept top-k = 2, B = 6,

and t = 2.0 for the following experiments.

Sparsity-recall tradeoff. With a good choice of B and t on hand, we now turn to the full IWSLT dataset

for both language pairs. We measure the performance gap as a function of the approximation to the ground-

truth α-entmax attention graph Gh by replacing it by Ĝh at test time. Moreover, we now add global and local

patterns to all methods, varying the window size within {0, 1, 3, 5, 7, 9, 11, 15, 19, 23, 27} to get different levels

of sparsity/recall. We compare all variants of Sparsefinder (distance-based, quantization, k-means) with fixed
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Figure 5.3: Sparsity-recall (top) and sparsity-BLEU (bottom) tradeoff averaged across all layers and heads on IWSLT
EN→DE (left) and EN→FR (right). The vertical dashed line represents the gold sparsity obtained by the full α-entmax
transformer, and the starred marks depict its BLEU score: 34.47 on EN→DE and 42.65 on EN→FR.

and learnable pattern methods: BigBird with 6 random blocks of size of 1; Longformer with 6 random global

tokens; Reformer with B = 6 buckets; and Routing transformer with B = 6 clusters and top-k set to ⌈n/B⌉ to

have balanced clusters.

Plots for the sparsity-recall tradeoff by varying the window size are shown in the top of Figure 5.3 for both

language pairs. Overall, both language pairs have similar trends for all methods. As the window size increases,

we get higher recall but lower sparsity. At the far right, we can see that all methods have a moderate recall

when no window is used, indicating that locality plays an important role in transformers. This is reinforced

by the good performance of Longformer and Bigbird, which have a dominant window pattern. The distance-

based method Pareto-dominates the other methods, followed by Sparsefinder k-means and Routing Transformer.

Since the LSH attention in Reformer concatenates queries and keys before hashing, the resultant buckets are

very similar to each other, therefore they tend to induce a graph with very high recall and very low sparsity.

Sparsity-accuracy tradeoff. We show the tradeoff between sparsity and BLEU in the bottom of Figure 5.3.

For lower levels of sparsity, all methods perform well, close to the full entmax transformer. But as sparsity

increases, indicating that only a few computations are necessary, we see that the distance-based and the k-

means variants of Sparsefinder perform better than other methods, keeping a very high BLEU without abdicating

sparsity. Moreover, the distance-method performs on par with the full entmax transformer even on the absence

of a fixed window pattern, i.e., when the window size is zero — the far right point on the curve. The k-means

variant lags behind the distance-based method for high sparsity scenarios, but as soon as we add a window with

size of 3, it recovers a high BLEU. Overall, these plots show that methods with a high recall for higher levels of

sparsity also tend to have a higher BLEU score.

Learned patterns. We select some heads and show in Figure 5.4 examples of the pattern learned by our k-

means variant by the decoder self-attention on EN→FR. More examples can be found in §C.3. We note that

the window pattern is useful to recover local connections. We can see that the k-means variant groups more

query and key pairs than the actual number of ground-truth edges (left and middle plots). However, due to the
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Figure 5.4: Ground-truth (left), learned patterns by Sparsefinder k-means (middle), and the subsequent attention weights
(right). Starred blocks represent ground-truth edges.

sparse-consistency property (right plot), we can see that most of these predictions receive zero probability by

α-entmax. Furthermore, in contrast to methods based on the approximation to the softmax such as Linformer

and Performer (Wang et al., 2020; Choromanski et al., 2021), the clear pattern exhibited by our method allows

the inspection of attention probabilities, enhacing interpretability.

5.6 Experiments: Masked LM

Setup. Following Beltagy et al. (2020), we initialize our model from a pretrained RoBERTa checkpoint. We

use the roberta-base model from Huggingface’s transformers library, with 12 layers and 12 heads.4 We

finetune on WikiText 103 (Merity et al., 2017), replacing softmax by α-entmax with α = 1.5 for all heads.

Training details, model hyperparameters, and data statistics are set in §C.2.

Learning projections. Like before, we learn to project keys and queries from the original 64 dimensions into

r = 4 dimensions. For this we use 1K random samples from the training set, each with length of 512, keeping

half for validation. Similarly to §5.5, we extract the α-entmax attention graphs Gh but from the encoder self-

attention of each head, leading to an average of 3M positive pairs per layer. We set the number of buckets to 8

for all cluster and quatization-based methods, 8 random blocks/tokens for BigBird/Longformer, t = 1.0 for the

distance-based method, and top-k = 2 for Sparsefinder k-means, by inspection on the validation set.

Results. Our full transformer trained with α-entmax achieved a perplexity score of 1.2529 with an overall

sparsity of 0.9804 on WikiText 103. As in sentence-level MT experiments, we measure the sparsity-recall

tradeoff and the performance gap via the change of Gh by Ĝh at test time. To get different levels of sparsity we

vary the window size within {31, 41, 51, 75, 101, 125, 151, 175, 201, 251}.

Results in terms of perplexity (or log-likelihood) as sparsity increases (window size changes) for each

method are shown in Figure 5.5. The curves for the sparsity-recall tradeoff are similar to the ones found in

MT experiments, with the distance-based method outperforming all methods, followed by the k-means variant

of Sparsefinder. Moreover, we can still achieve very high recall and low perplexity with all methods by sacrific-

ing some sparsity. We can see that our distance and clustering variants present the best Pareto curves in terms of

4https://huggingface.co/roberta-base
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Figure 5.5: Sparsity-recall and sparsity-(neg-)perplexity tradeoff averaged across all layers and heads on WikiText 103. The
vertical dashed line represents the gold sparsity obtained by the full α-entmax transformer.

perplexity, followed by Routing Transformer. The overall aspect of these plots suggest that local patterns have

a great impact on performance, and that it is possible to design powerful sub-quadratic transformers without

compromising sparsity too much. Moreover, although the distance-based method requires a quadratic number

of computations, it reduces them by a factor of d/r = 64/4 = 16, as described in §5.4.3, and achieves better

recall and accuracy than any other tested method, indicating an open area to design even more effective and

efficient algorithms.
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Figure 5.6: Tokens assigned to a given cluster, for the entire Wikitext 103 validation set. In the following sample we show
which tokens are keys and queries for this cluster: There have been been a large number of examples published where the
requisite cation is arrived at by a variety of rearrangements

Analysis. To understand what is represented in each cluster, we run the following experiment: we obtain POS

tags using spaCy, and calculate the distribution of each tag over clusters for all heads. We show an example in

Figure 5.6 which focuses on auxiliary verbs. Here the cluster learned to group certain words (including verbs

and nouns) which can attend to words of those same classes, and additionally attend to most auxiliary verbs.

Learned patterns. In Figure 5.7 we show Sparsefinder k-means’ predicted attention graphs for a specific

attention head that originally learned to focus on coreference tokens. We can see that the pattern induced by

Sparsefinder keeps the behavior of attending to coreference tokens. In particular, this attention head achieves a

high recall score (∼ 80%) with a high sparsity rate (∼ 75%).

5.6.1 Efficient Sparsefinder

We now turn to the question of making Sparsefinder efficient in practice. Before we proceed, we note

that comparison between methods usually depends on the specific implementation used, which influences the

measurements and can also require specialized hardware. This leaves BigBird and Routing Transformer as the
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Figure 5.7: Learned pattern by Sparsefinder k-means of an attention head that focus on coreferences. Sparsefinder k-means
achieves a recall of ∼ 80% with a sparsity rate of ∼ 75% on this attention head.

only models we can compare with in practice: Reformer includes other optimizations that are not part of the

attention mechanism, and Longformer is based on CUDA kernels, specialized for fast computation. Lastly,

the strategy used in Routing Transformer is incorporated in Sparsefinder (v2), where we use Sparsefinder’s

centroids with Routing Transformer top-k strategy. In order to make Sparsefinder more efficient, we adopt the

key strategy of BigBird: work with contiguous chunks rather than single tokens, creating blocks in the attention

matrix. More precisely, we learn projections over chunked tokens following Equation 5.7, where (q′,k′
P ) is a

positive pair if any token inside the chunk is part of a positive pair of the original α-entmax graph, and similarly,

a pair (q′,k′
N ) is negative if all tokens inside the chunk are negative. Thus, given a block/chunk size z, the size

of the dense attention graph reduces from |Gh| = nm to |Gh| = ⌈nm/z2⌉ (with zero-padding).

Implementation. In order to be comparable to BigBird, we implement a routine that caps the maximum

number of attended blocks in Sparsefinder, analogous to the number of random blocks used in BigBird. We

propose two variants: (v1) computes dot-products between all chunked vector projections and then returns the

top-k blocks, and (v2) selects the top-k blocks closest to the learned centroids and computes dot-products for

these blocks. The first variant is more costly, yet it may lead to a more robust selection, whereas the second

variant resembles Routing Transformer’s top-k strategy.

Results. We measure the clock-time of the MLM model evaluated on 500 examples with a batch size of 8. We

vary the number of attended blocks within {2, 3, 4, 8, 16, 22 ≈
√
n}, the block size in {2, 4, 8, 16}, and compute

perplexity for values of B (number of clusters) within {2, 4, 8, 12, 16, 20}. We use a window size of 3 in all

experiments to capture the controlled hyperparameters’ impact better. Figure 5.8 shows plots by averaging runs

with different block sizes and number of clusters. As expected, using a lower number of attended blocks leads

to improvements in terms of running time, yet all models perform poorly on the MLM task. As we increase

the number of blocks, we can see both a boost in terms of MLM performance and an increased running time.

By comparing Sparsefinder and BigBird, we notice that BigBird is faster than Sparsefinder, but increasing the

number of attended (random) blocks in BigBird does not lead to significant improvements on the real task. In

contrast, both versions of Sparsefinder can improve the MLM performance while still being faster than a regular

α-entmax transformer. In particular, by attending to only 2 blocks, Sparsefinder is able to achieve a better MLM
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Figure 5.8: Comparison of Sparsefinder and BigBird in terms of running time and (negative) perplexity by varying the
number of attended blocks. The black dashed line represents the results obtained by the full α-entmax transformer.

score than BigBird with 22 random blocks while still being faster than it. Plots for each block size can be found

in §C.4.

5.7 Conclusions and Subsequent Works

We proposed Sparsefinder, a method to identify the sparsity pattern of entmax-based transformers while

avoiding full computation of the score matrix. Our method learns a low-dimensional projection of queries

and keys with a contrastive objective, and comes with three variants: distance, quantization, and clustering-

based. We compared these variants against competing approaches on two tasks: machine translation and masked

language modeling. We obtained favorable sparsity-recall and sparsity-accuracy tradeoff curves, and provided

evidence that optimized attention heads are remained amenable to human interpretation.

Since our theoretical sparsity estimation provides a lower bound for how much computational sparsity can

be achieved, we believe that our extensive analysis may guide future research on efficient transformers as hard-

ware keeps evolving. Finally, Sparsefinder stands out from other approaches by seeking a balance between

theoretical sparsity and approximation quality while preserving interpretability. As we will explore further in

Chapters 7 and 8, we believe that our proposed approach to treat each attention head independently has potential

applications to improve the quality of explanations extracted from them.
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In the second part of this thesis, we investigate and propose new ways to interpret decisions made by quality

estimation (QE) models. Our research started in 2019, in a collaboration with the Unbabel AI team to design

accurate QE models for the WMT19 Shared Task on Quality Estimation (Kepler et al., 2019a), where we

pioneered the use of pretrained transformers for QE, which led us to winning the shared task at the time. Our

winning approaches have since been incorporated into the open-source framework OpenKiwi (Kepler et al.,

2019b), which implements the best QE systems from recent WMT shared tasks.

Motivated by the work of Fomicheva et al. (2022a) on bridging explainability with word-level QE, we

turned our focus towards extracting explanations from modern QE models based on pretrained transformers.

Our first contributions to this end are detailed in this chapter, where we collaborated with the Unbabel AI

team to participate in the Explainable Quality Estimation Shared Task (Fomicheva et al., 2021). The systems

submitted to the shared task were divided into two tracks: constrained (without word-level supervision) and

unconstrained (with word-level supervision). Initially, we explored multiple explainability methods, including

gradient, erasure, and rationalization approaches (Lei et al., 2016; Bastings et al., 2019), as well as averaging

attention from different layers, as suggested in (Fomicheva et al., 2022a), to extract the relevance of input tokens

from sentence-level QE models built on top of multilingual pretrained transformers.

Subsequently, our finding from the previous chapter that distinct attention heads learn specialized linguistic

phenomena motivated us to explore the role of single attention heads, which proved to be beneficial for QE.

We further improve our explanations by scaling attention weights by the norm of values vectors, a strategy

that was shown to improve plausibility at the time (Kobayashi et al., 2020). By ensembling explanation scores

extracted from models trained with different pretrained transformers, we produced winning submissions for the

constrained track for almost all language pairs, and achieved strong results for the unconstrained track without

using synthetic data for word-level supervision.

This chapter is based on Treviso et al. (2021).

6.1 Motivation

Recent advances in QE have led to consistent improvements at predicting quality assessments such as Direct

Assessments (DAs, Graham et al. 2013). Traditional QE systems had to predict Human Translation Error Rate

(HTER, Snover et al. 2006), yet with the advent of neural machine translation, we observed a shift from fluency

into adequacy errors (Martindale and Carpuat, 2018). For that reason, DAs started getting used as the ground-

truth score for assessing the quality of translations (Specia et al., 2020). However, with DAs we lose the ability

to generate word-level supervision, impacting the interpretability of sentence-level predictions in terms of lower

granularity elements such as word-level translation errors.

At the same time, prominent QE systems such as OpenKiwi (Kepler et al., 2019b) and TransQuest (Ranas-

inghe et al., 2020) build on top of multilingual pretrained models such as BERT (Devlin et al., 2019) and

XLM-RoBERTa (Conneau et al., 2020), which are largely responsible for the performance boost we have ob-

served in recent editions of the WMT QE shared task (Fonseca et al., 2019; Specia et al., 2020). Due to the

usage of such over-parameterized black-box models, this performance boost also comes at the cost of efficiency

and interpretability.

Research in explainable NLP uncovered several strategies to interpret models’ decisions, either in a post-
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hoc manner by querying a trained model for extracting perturbation or gradient measures (Ribeiro et al., 2016;

Arras et al., 2016), or by building models that are inherently interpretable (Lei et al., 2016; Chang et al., 2020).

Recent works have also put transformers under the lens of explainability, aiming at unraveling interpretable

patterns that clarify how decisions emerge from attention heads and across hidden states at each layer (De Cao

et al., 2020; Abnar and Zuidema, 2020; Voita et al., 2021).

In this shared task, we experiment with several of these methods to extract the relevance of input tokens from

sentence-level QE models built on top of multilingual pretrained transformers.1 For the constrained track, where

models are unaware of word-level supervision, our best results were derived from attention-based explanations.

When we used word-level labels during training, the best results were obtained by using word-level predicted

probabilities. Furthermore, we were able to push the performance further by ensembling explanations for both

tracks.

6.2 Background

Quality Estimation. As noted in §2.2, QE systems are usually designed according to the granularity in which

predictions are made. Sentence-level QE aims at predicting the quality of the whole translated sentence, either in

terms of how many edit operations are required to fix it (HTER) or in terms of human judgments (DA). The goal

of word-level QE is to assign quality labels (OK or BAD) to each machine-translated word, indicating whether

that word is a translation error or not. Additionally, current systems also classify source words to denote words

in the original sentence that have been mistranslated or omitted in the target.

Transformers. The multi-head attention mechanism is the bedrock on which transformers are built, being

responsible for contextualizing information within the input dynamically (Vaswani et al., 2017). We describe

the multi-head attention mechanism in detail in §2.1.3.

Explainability in NLP. There is a large body of work on the analysis and interpretation of models in NLP.

Some of these models are built on top of attention mechanisms, which automatically learn a weighted rep-

resentation of input features. Attention weights provide plausible, but not always faithful, explanations (Jain

and Wallace, 2019; Wiegreffe and Pinter, 2019). In contrast, rationalizers with hard attention are arguably

more faithful but require stochastic networks (Lei et al., 2016; Bastings et al., 2019), with recent works avoid-

ing stochasticity via sparse deterministic selections (Treviso and Martins, 2020; Guerreiro and Martins, 2021).

Other approaches seek local explanations by considering gradient measures (Arras et al., 2016; Bastings and

Filippova, 2020), or by perturbing the input and querying the classifier in a post-hoc manner (Ribeiro et al.,

2016; Kim et al., 2020). Since transformers are composed of several layers and attention heads, many works

analyze and improve the multi-head attention mechanism directly to produce better explanations (Kobayashi

et al., 2020; Hao et al., 2021). More elaborated methods consider the entire flow of information coming from

attention weights, hidden states, or gradients to interpret the model’s decision (De Cao et al., 2020; Abnar and

Zuidema, 2020; Voita et al., 2021).
1Our code can be found at: https://github.com/deep-spin/explainable_qe_shared_task/.
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Figure 6.1: General architecture of our models for the constrained track. L represents the number of layers. Nsrc and Nhyp

represent the number of words in the source and hypothesis sentences, respectively. N = Nsrc + Nhyp is the number of
words after concatenating the two sentences. D is the size of hidden vectors.

6.3 Constrained Track

The goal of the constrained track is to identify machine translation errors without explicit word-level anno-

tation. More precisely, it aims at performing word-level quality estimation by casting the task as a prediction

explainability problem. In the context of QE, explanations can be seen as highlights, representing the relevance

of input words w.r.t. the model’s prediction via continuous scores. We next describe the datasets, models, and

explainability methods that we used for this track.

6.3.1 Datasets

Seeking to improve the performance of our models on the zero-shot language pairs (LPs), we used all

language pairs from the MLQE-PE dataset (Fomicheva et al., 2022b) to train our models for both tracks. For

RO-EN and ET-EN, we evaluated our models on the validation set of these LPs. For the two zero-shot LPs,

DE-ZH and RU-DE, we used the 20 sentences made available by the shared task and the validation sets of EN-ZH

and EN-DE to improve the robustness of the evaluation of explanations w.r.t. the target language. We used

word-level labels to train word-level models for the unconstrained track only. For sentence-level models, we

supervise our models using DA scores.

6.3.2 Sentence-level Models

Since QE is a fundamental tool in many MT pipelines, we focus our efforts on designing and explaining

QE systems with high sentence-level performance. Therefore, we opted to follow the recent trend in this area

(Kepler et al., 2019b; Ranasinghe et al., 2020) and employed two pretrained multilingual language models as

the feature extractors for our models: XLM-RoBERTa and RemBERT.

The overall architecture of our models is shown in Figure 6.1. The tokenized source s = ⟨s1, ..., sn⟩ and

hypothesis t = ⟨t1, ..., tm⟩ sentences are concatenated and passed as input to the encoder, which produces

hidden state vectors H0, ...,HL for each layer 0 ≤ ℓ ≤ L, where Hi ∈ R(n+m)×d. Next, all hidden states

are fed to a scalar mix module (Peters et al., 2018b) that learns a weighted sum of the hidden states of each

layer of the encoder, producing a new sequence of aggregated hidden states HL+1. We split HL+1 into source
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ENCODER RO-EN ET-EN DE-ZH RU-DE

OpenKiwi 0.820 0.757 0.395 0.176
XLM-R 0.878 0.756 0.521 0.563
XLM-R-M 0.877 0.780 0.797 0.352
RemBERT 0.883 0.762 -0.002 0.505

Table 6.1: Pearson correlation of our sentence-level QE systems by varying the model used as the encoder layer.

Hsrc ∈ Rn×d and hypothesis hidden states Hhyp ∈ Rm×d, which are independently passed to an average

pooling layer to get their sentence representations hsrc and hhyp. We merge both representations via a convex

combination with α = 0.5 to encourage the model to use both source and hypothesis contexts. Finally, we

pass the combined vector to a 2-layered feed-forward module in order to get a sentence score prediction ŷ ∈ R.

Moreover, attention matrices A1, ...,AL are also recovered as a by-product of the forward propagation, where

Ai ∈ R(n+m)×(n+m). The hyperparameters used for training can be found in §D.1.

XLM-RoBERTa as encoder. We set a XLM-RoBERTa Large (XLM-R, Conneau et al. 2020) as the encoder

layer.2 XLM-R is a cross-lingual transformer pretrained on massive amounts of multi-lingual data. It consists

of 24 encoder blocks with 16 attention heads each. Following (Zerva et al., 2021) we train our complete model

on DAs by using adapters for the XLM-R encoder (Houlsby et al., 2019; Pfeiffer et al., 2020) to adapt it to the

domain specific data of the QE task with minimal training effort.

XLM-RoBERTa for zero-shot LPs. To improve the robustness of XLM-R on out-of-domain data, we used

an XLM-RoBERTa Large model that was trained with DA’s from the metrics shared task.3 Next, we set it as the

encoder layer, and adapted it for predicting DAs from the MLQE corpus as in (Zerva et al., 2021). Altogether,

the data from the Metrics shared task encompasses 30 language pairs from the news domain—yet, the zero-shot

LPs are not included in this set. The hyperparameters and the training regime of this model are the same as the

previously described XLM-R. We denote this model as XLM-R-M from here on.

RemBERT as encoder. We replace the XLM-R by a RemBERT model as the encoder layer (Chung et al.,

2021).4 Multilingual BERT (Devlin et al., 2019) has been shown to provide complementary performance to

XLM-based models for sentence-level and word-level QE (Kepler et al., 2019a). We opted to use RemBERT

since it can be seen as a larger multilingual BERT with decoupled input and output embeddings, which helps to

accelerate finetuning as output embeddings can be discarded. It consists of 32 encoder blocks with 18 attention

heads each. Rather than aggregating layers with the scalar mix layer, we perform average pooling over the

hidden states of the last layer of RemBERT. For training, we simply finetune the whole model with small

learning rates.

Results. Table 6.1 summarizes the performance of our sentence-level models on the validation set in terms of

Pearson correlation for each language pair evaluated in the shared task. For completeness, we show results for

the 20 sentences made available by the shared task for DE-ZH and RU-DE. We also include OpenKiwi with a

2https://huggingface.co/xlm-roberta-large
3https://huggingface.co/Unbabel/xlm-roberta-wmt-metrics-da
4https://huggingface.co/google/rembert
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XLM-R Large as the encoder for comparison. We note that results for DE-ZH and RU-DE are noisy due to the

small amount of validation data available for these LPs.

6.3.3 Explainability Methods

Several explainability methods can be used to extract highlights from a trained model in a post-hoc fashion.

It is also possible to design a model that is explainable by construction, such as rationalizers (Lei et al., 2016;

Bastings et al., 2019). We investigate rationalizers, attention, gradient, and perturbation-based methods for this

shared task.

Attention-based methods. Since the backbone of our models consists of pretrained multilingual transform-

ers, we studied their main component—the multi-head attention mechanism—expecting to find interpretability

patterns that assign higher scores to words associated with translation errors. We extracted the following expla-

nations from the multi-head attention mechanism:

• Attention weights: average the attention matrix A row-wise for all heads in all layers, amounting to a

total of 24 × 16 = 384 and 32 × 18 = 576 explanation vectors a ∈ Rn+m for XLM-R and RemBERT-

based models, respectively.

• Cross-attention weights: by manual inspection of attention weights, we noticed that some attention

heads learn plausible connections from source-to-hypothesis and hypothesis-to-source. Therefore, instead

of computing a row-wise average of the entire attention matrix, we average only cross-alignment rows.5

• Attention × Norm: following the findings of Kobayashi et al. (2020), we scale attention weights by the

norm of value vectors ∥V W V
h ∥2.

Gradient-based methods. Explanations extracted by storing gradients computed during the backward prop-

agation is a standard tool used to interpret NLP models. For this shared task, we investigate the following

gradient-based methods:6

• Gradient × Hidden States: we compute gradients w.r.t. the hidden states of each layer, and multiply the

resultant vectors by the hidden state vectors themselves: ∇Hi ×Hi ∈ RN+M , for 0 ≤ i ≤ L+ 1.

• Gradient × Attention: the same as before, but we use the output of the multi-head attention module

instead of the hidden states.

• Integrated Gradients: we extract integrated gradient explanations w.r.t. the hidden states of each layer.

We use a zero-vector as the baseline. We map gradients to explainability scores by normalizing them by

their L2 norm and summing the hidden dimensions: 1⊤∇Hi/ ∥∇Hi∥2.

Perturbation-based methods. As baselines, we also extracted explanations using LIME (Ribeiro et al.,

2016) and a leave-one-out strategy, where we replace the “erased” token by the [mask] token, which is used

for the masked-language model training of XLM-R and RemBERT.
5Note that we can get cross-attentions from XLM-R and RemBERT by selecting only the words of the source that attend to the hypothesis

and vice-versa.
6Our implementation is based on Captum: https://captum.ai/
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RO-EN ET-EN DE-ZH RU-DE

ENCODER Src. Tgt. Src. Tgt. Src. Tgt. Src. Tgt.

OpenKiwi 0.581 0.620 0.488 0.554 0.271 0.184 0.243 0.029
XLM-R 0.610 0.644 0.503 0.559 0.230 0.312 0.273 0.061
XLM-R-M 0.636 0.667 0.464 0.530 0.262 0.336 0.343 0.179
RemBERT 0.624 0.659 0.474 0.555 0.173 0.211 0.247 0.201

Table 6.2: Source and target MCC results of our word-level QE systems by varying the model used as the encoder layer.
The values of λ for each model are: 103, 104, 104, 104.

Rationalizers. We append a differentiable binary mask layer (Bastings et al., 2019) on top of the XLM-R

model in order to select which tokens are passed on for an estimator for the prediction of a sentence-level score.

For each instance, we take the model representations from the scalar-mix layer and pass it to an encoder module,

in which we sample a binary mask z ∈ [0, 1]n+m from a relaxed Bernoulli distribution (Maddison et al., 2017;

Jang et al., 2017), and pass z ⊙ [s; t] to an estimator module, which re-embeds the masked input and pass it to

a linear output layer. Therefore, good explanations z will aid the estimator in producing good sentence-level

scores. In training time, the parameters of the encoder and the estimator are jointly trained. In test time, we do

not sample binary masks. Instead, we use the relaxed Bernoulli distribution probabilities as explanations.

6.4 Unconstrained Track

In this track, we opted to use word-level annotation by incorporating a word-level loss to our previous

models. To do this, we apply a map from word pieces to tokens after the scalar mix layer and pass the hidden

vectors of each token through a feed-forward layer with a sigmoid activation to predict scores ŷi ∈ [0, 1].

We weight the word-level loss by λ and sum it with the sentence-level loss. As baseline, we train a XLM-

R Large model using OpenKiwi with the default hyperparameters. For all word-level models, we train with

λ ∈ {103, 104, 105} and save the checkpoint with the best performance on the validation set.

Results. Table 6.2 shows the results of our word-level models on the validation set in terms of Matthews

correlation coefficient (MCC) for each LP evaluated in the shared task. For completeness, we include the

results for the 20 available sentences for DE-ZH and RU-DE.

6.5 Experimental Results

Although we can regard the extracted explanations as errors in the translation output, an analogous eval-

uation of word-level QE is not straightforward since the standard metrics require binary labels rather than

continuous scores. Therefore, the explanations are evaluated against the ground-truth word-level labels in terms

of the Area Under the Curve (AUC), Average Precision (AP), and Recall at Top-K (R@K) metrics only on the

subset of translations that contain errors.

Furthermore, since all of our models use subword tokenization, to get explanations for an entire word, we

tried aggregating the scores of its word pieces by taking the sum, mean, or max, and we found that taking the

sum performs better overall.
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Figure 6.2: Target AUC of different attention heads at each layer of our XLM-R model for RO-EN. The last tick on the
y-axis represents the average of all attention heads.

6.5.1 Constrained Track

Attention heads are better alone. We found that some attention heads (mostly at upper layers) learned to

focus on words associated with BAD tags, achieving great performance in terms of AUC and AP on the validation

set. We show in Figure 6.2 the target AUC of different attention heads per layer as a heatmap for RO-EN, with

darker colors indicating higher results.7 We can see that attention heads in layers 18 and 19 perform better than

other layers in general, and that some attention heads solely outperform the average of all attention heads for

all respective layers. For example, the attention head 3 at layer 18 achieves an AUC score of 0.79, while the

average of all attention heads from layer 18 gets an AUC score of 0.74 (5 points difference). The findings are

similar for source AUC, with the exception that attention heads at lower layers also seem to achieve comparable,

yet not better, results. This behavior was also noted by Fomicheva et al. (2022a), with the difference that we

analyzed attention heads independently rather than averaging them at each layer. Kobayashi et al. (2020) also

arrive at similar findings but in terms of alignment error rate in a neural machine translation context.

Attention × Norm outperforms other explainers. By scaling attention probabilities by the L2 norm of value

vectors, we improved the performance further. All of our best results consist of attention-based explainers, with

the majority being the explanations that consider the norm of value vectors. We show the results of our best

explainers on the validation set of RO-EN in Table 6.3 using XLM-R as encoder.8 When using XLM-R-M or

RemBERT as encoder the results are similar, except that the best explainer comes from different attention heads

at different upper layers.

Overall, we observed that attention methods outperform gradient and perturbation methods by a considerable

7We got similar findings for ET-EN.
8Results for ET-EN follow the same trend (see §D.2).
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Source Target

EXPLAINER AUC AP R@K AUC AP R@K

Attention 0.7445 0.6353 0.5164 0.7894 0.7189 0.6054
Cross-attention 0.7514 0.6345 0.5170 0.8066 0.7378 0.6293
Attention × Norm 0.7851 0.6875 0.5701 0.8136 0.7432 0.6342
Gradient × Hidden States 0.6949 0.5629 0.4399 0.6780 0.5388 0.4044
Gradient × Attention 0.7104 0.5942 0.4913 0.7618 0.6747 0.5628
Integrated Gradients 0.6539 0.5251 0.4059 0.6560 0.5148 0.3853
LIME 0.6470 0.5160 0.3922 0.5892 0.4576 0.3300
Leave-one-out 0.6970 0.5673 0.4409 0.5921 0.4752 0.3567
Relaxed-Bernoulli Rationalizer 0.4803 0.3638 0.2483 0.5434 0.4043 0.2914

Table 6.3: Constrained track results for different explainability methods on the validation set of RO-EN using XLM-R as
encoder.

margin, and gradients w.r.t. attention outputs yield better results than gradients w.r.t. hidden states, indicating

that the information stored in attention heads is valuable. In Figure 6.3 we show the attention map of two

attention heads that perform well in terms of source AUC and target AUC on the validation set of RO-EN.

We noted qualitatively that attention-heads that perform well on source AUC usually focus on cross-sentence

tokens,9 whereas attention-heads that have good results in terms of target AUC usually focus on hypothesis

tokens. Lastly, our strategy of appending a bottleneck layer acting as rationalizer did not work well, achieving

worse results than perturbation-based methods.

Figure 6.3: Example of two attention maps from particular heads that perform well on source AUC (left) and target AUC
(right) for RO-EN.

Results for all LPs. We show the results on the validation set for all LPs in Table 6.4 (left) with the best

Attention × Norm explanations for each tested encoder. We also report results of ensembled explanations,

which are obtained by simply averaging selected Attention × Norm explanations from models with different

encoders. Results for all tested explanation methods can be found in §D.2. When comparing single encoders for

in-domain LPs, we see that explanations from our XLM-R-based model achieved the best results for source and
9Cross-sentence tokens are hypoehsis tokens attended by source tokens and also source tokens attended by hypoehsis tokens.
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Source (constrained) Target (constrained) Source (unconstrained) Target (unconstrained)

LP ENCODER AUC AP R@K AUC AP R@K AUC AP R@K AUC AP R@K
R

O
-E

N

OpenKiwi - - - - - - 0.907 0.811 0.704 0.921 0.826 0.718
XLM-R 0.785 0.687 0.570 0.814 0.743 0.634 0.914 0.825 0.722 0.928 0.851 0.764
XLM-R-M 0.753 0.661 0.548 0.769 0.693 0.593 0.913 0.826 0.724 0.926 0.851 0.761
RemBERT 0.784 0.699 0.590 0.790 0.686 0.572 0.918 0.831 0.731 0.934 0.862 0.769
Ensemble 0.807 0.720 0.607 0.842 0.772 0.662 0.927 0.844 0.744 0.942 0.874 0.786

E
T-

E
N

OpenKiwi - - - - - - 0.848 0.749 0.635 0.873 0.798 0.692
XLM-R 0.733 0.618 0.486 0.740 0.648 0.530 0.858 0.768 0.656 0.881 0.814 0.711
XLM-R-M 0.623 0.504 0.367 0.712 0.625 0.513 0.854 0.751 0.630 0.875 0.804 0.704
RemBERT 0.750 0.638 0.523 0.708 0.595 0.476 0.851 0.747 0.631 0.881 0.806 0.703
Ensemble 0.744 0.637 0.509 0.764 0.680 0.569 0.870 0.778 0.668 0.896 0.832 0.735

D
E

-Z
H

OpenKiwi - - - - - - 0.721 0.616 0.545 0.648 0.483 0.356
XLM-R 0.720 0.465 0.288 0.683 0.542 0.406 0.674 0.486 0.298 0.650 0.511 0.352
XLM-R-M 0.773 0.609 0.454 0.697 0.545 0.427 0.711 0.574 0.463 0.712 0.595 0.468
RemBERT 0.762 0.579 0.405 0.692 0.470 0.358 0.619 0.443 0.341 0.585 0.445 0.354
Ensemble 0.792 0.581 0.440 0.711 0.575 0.477 0.745 0.635 0.548 0.705 0.575 0.418

R
U

-D
E

OpenKiwi - - - - - - 0.727 0.620 0.559 0.620 0.409 0.359
XLM-R 0.719 0.400 0.316 0.822 0.500 0.335 0.729 0.604 0.485 0.623 0.369 0.282
XLM-R-M 0.743 0.529 0.425 0.838 0.532 0.369 0.740 0.645 0.545 0.640 0.470 0.447
RemBERT 0.776 0.646 0.550 0.826 0.537 0.418 0.802 0.712 0.607 0.721 0.504 0.393
Ensemble 0.804 0.604 0.459 0.855 0.628 0.514 0.799 0.716 0.616 0.719 0.521 0.439

Table 6.4: Constrained (left) and unconstrained (right) track results on the validation set for all LPs using the Attention ×
Norm explainer.

target metrics on RO-EN, with competitive results on ET-EN, for which explanations from a RemBERT-based

model ranked first for source metrics. Despite being a simple strategy, we usually got ∼2 more points of AUC,

AP, and R@K by averaging attention explanations. We note that explanations from XLM-R-M and RemBERT

perform well on the 20 sentences made available by the shared task for zero-shot LPs. Between XLM-R and

XLM-R-M, explanations from the latter lead to better results for both DE-ZH and RU-DE, suggesting that the

additional data from the Metrics shared task might help to improve the robustness for zero-shot LPs. Ensembling

explanations also leads to higher performance for zero-shot LPs. However, we note that results for DE-ZH and

RU-DE are noisy due to the small amount of validation data.

6.5.2 Unconstrained Track

In this track, we used the predicted probabilities of BAD tags from supervised word-level QE models as

explanation scores. The results are shown in Table 6.4 (right). As found in the constrained track, XLM-R

and RemBERT-based models perform better for in-domain LPs, while XLM-R-M and RemBERT lead to better

results for zero-shot LPs. Consistent with our findings in the constrained track, ensembling explanations also

reflects in improvements in this track.

6.6 Official results

The official results of the shared task are shown in Table 6.5 for both tracks in terms of R@K.10 Our final

submissions consist of ensembled explanations since they proved to perform better for all LPs in both tracks.

More specifically, we ensembled Attention × Norm explainers from the models shown in Table 6.4 (left) for the

10We report results in terms of R@K for consistency with the 2022 edition of the shared task, which we cover in the next chapter.
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Source Target

Team RO-EN ET-EN DE-ZH RU-DE RO-EN ET-EN DE-ZH RU-DE

Constrained track:
Baseline: Random 0.15 0.19 0.17 0.24 0.19 0.25 0.17 0.22
Baseline: XMover+SHAP 0.15 0.23 0.16 0.26 0.30 0.34 0.22 0.23
Baseline: TransQuest+LIME 0.24 0.31 0.20 0.32 0.42 0.43 0.14 0.16
HeyTUDa (Eksi et al., 2021) - - - - 0.38 0.41 0.18 0.23
CLIP-UMD (Kabir and Carpuat, 2021) 0.37 0.45 0.25 0.37 0.49 0.53 0.27 0.36
Gringham (Leiter, 2021) 0.45 0.59 0.27 0.56 0.61 0.60 0.22 0.46
IST-Unbabel (this work) 0.62 0.64 0.32 0.52 0.68 0.63 0.37 0.47

Unconstrained track:
CUNI Prague (Polák et al., 2021) 0.70 0.76 0.27 0.56 0.73 0.75 0.30 0.50
NICT Kyoto* (Rubino et al., 2021) 0.75 0.77 0.51 0.71 0.78 0.76 0.57 0.74
IST-Unbabel (this work) 0.71 0.77 0.35 0.59 0.75 0.76 0.34 0.52

Table 6.5: Official test set results in terms of R@K (Fomicheva et al., 2021). *As noted by the organizers, the NICT Kyoto
team used additional synthetic data for word-level supervision, thus we categorize them in the unconstrained track.

constrained track; and we ensembled the predicted probabilities of BAD tags from the models shown in Table 6.4

(right) for the unconstrained track. We note that results for the unconstrained track are superior to those obtained

in the constrained track. However, the opposite is true for DE-ZH on the target side, suggesting that extracting

rationales from a sentence-level QE model is a promising weak-supervised strategy for identifying translation

errors. In summary, our submissions demonstrate superior performance across nearly all language pairs in the

constrained track when compared to other teams, highlighting the effectiveness and robustness of our approach

in handling diverse language combinations. In the unconstrained track, the NICT Kyoto team obtained the best

overall results by augmenting the training data with millions of synthetic examples (Rubino et al., 2021), while

our approach achieved the second-best results by using only the official in-domain data.

6.7 Conclusions and Subsequent Works

We have shown that the multi-head mechanism—the bedrock on which transformers are built—is able to

learn the importance of tokens associated with BAD tags. Furthermore, composing explanations in the form

of attention probabilities scaled by the norm of value vectors leads to further improvements (Kobayashi et al.,

2020). Ensembling these explanations yields the best results overall for all tested metrics on all LPs, including

zero-shot ones.

Transformers are composed of many parameters across a vast amount of heads and layers. Strategies that

explore how explanations are formed as we move to upper layers are promising, such as computing attention

flows and differentiable binary masks per layer (Abnar and Zuidema, 2020; De Cao et al., 2020). This shared

task focused only on the intersection between explainability and QE, yet for future work we plan to apply

explainability methods to recent MT metrics such as COMET (Rei et al., 2020a,b; Glushkova et al., 2021) and

BLEURT (Sellam et al., 2020a,b).

As we will detail in the next two chapters, this work paved the way for building better explainability methods

for QE, such as exploring the combination of attention with gradient information and automatically identifying

relevant attention heads (Rei et al., 2022b; Fernandes et al., 2022).
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In the previous chapter, we demonstrated that attention-based methods outperformed other methods for ex-

plaining transformer-based QE models. Building on this finding, we continued to explore information contained

in attention heads in a new collaboration with the Unbabel AI team to the WMT 2022 QE Shared Task, where

we participated on all three subtasks: (i) Sentence and Word-level Quality Prediction; (ii) Explainable QE; and

(iii) Critical Error Detection. However, in this chapter we cover only the part concerned with Explainable QE.

A significant weakness of our previous approach, detailed in Chapter 6, is that we had to manually search

over all attention heads to find the best ones, as determined by evaluation on a held-out dataset. To address

this issue, we improved our methods by designing a sparse bottleneck layer that aggregates hidden states from

selected attention heads to produce a sentence-level prediction, which we call Sparse Head Mix. Drawing inspi-

ration from the literature (Chrysostomou and Aletras, 2022), we further improve our explanations by combining

attention with gradient information extracted at the attention head level. We show that the coefficients extracted

from the Sparse Head Mix module can be leveraged to automatically identify relevant attention heads, thus

alleviating the cost of exhaustive manual search. This innovation not only saves time and effort but also im-

proves the interpretability of the model by providing insight into which attention heads are contributing most to

the final prediction. Overall, we found that these two innovations were essential to our success in winning the

shared task in that year for 7 out of 9 language pairs.

Chapter based on Rei et al. (2022b).

7.1 Motivation

In this work, we leverage the similarity between the tasks of MT evaluation and QE and bring together the

strengths of two frameworks, COMET (Rei et al., 2020a), which has been originally developed for reference-

based MT evaluation, and OPENKIWI (Kepler et al., 2019b), which has been developed for word-level and

sentence-level QE. Namely, we implement some of the features of the latter, as well as other new features,

into the COMET framework. The result is COMETKIWI, which links the predictor-estimator architecture with

COMET training-style, and incorporates word-level sequence tagging.

Given that some language pairs (LPs) in the test set were not present in the training data, we aimed at

developing QE systems that achieve good multilingual generalization and that are flexible enough to account

for unseen languages through few-shot training. To do so, we start by pretraining our QE models on Direct

Assessments (DAs) annotations from the previous edition’s Metrics shared task as it was shown to be beneficial

in our previous submission (Zerva et al., 2021; Treviso et al., 2021). Then we fine-tune our models with the data

made available by the shared task.1

We experimented with different pretrained multilingual transformers as the backbones of COMETKIWI,

and we developed new explainability methods to interpret them. We describe our systems and their training

strategies in §7.3. Overall, our main contributions are:2

• We investigate explainability methods on top of COMETKIWI, a model that and achieved the best sentence

and word-level results on the shared task for several language pairs (Zerva et al., 2022).

1For zero-shot LPs we use 500 training examples which means we turn it into a few-shot setting. The only exception is English→Yoruba
which was kept zero-shot.

2Code available at: https://github.com/Unbabel/COMET
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Figure 7.1: General architecture of COMETKIWI for sentence-level (left part) and word-level QE (right part).

• We propose a new interpretability method that uses attention and gradient information along with a head-

level scalar mix module that further refines the relevance of attention heads.

• We demonstrate that our approach can be explored to perform word-level QE in an unsupervised fashion,

and provide complementary information that can be used to further boost the performance of COMETKIWI.

Our submitted systems achieve the best multilingual results on all tracks by a considerable margin:

for sentence-level DA our system achieved a 0.572 Spearman correlation (+7% than the second best system); for

word-level our system achieved a 0.341 MCC score (+2.4% than the second best system); and for Explainable

QE our system achieved 0.486 R@K score (+10% than the second best system). The official Explainable QE

results for all LPs are presented in Table 7.4.

7.2 Background

Quality Estimation. QE systems are usually designed according to the granularity in which predictions are

made, such as sentence and word-level. In sentence-level QE, the goal is to predict a single quality score ŷ ∈ R

given the whole source and its translation as input. Word-level QE works in a lower granularity level, with the

goal of predicting binary quality labels ŷi ∈ {OK, BAD} for all 1 ≤ i ≤ n machine-translated words, indicating

whether that word is a translation error or not. More details about QE can be found in §2.2.

Transformers. The multi-head attention mechanism is the key component in transformers, being responsible

for contextualizing the information within and across input sentences (Vaswani et al., 2017). We describe the

multi-head attention mechanism in detail in §2.1.3.

7.3 Implemented Systems

The overall architecture of our models is shown in Figure 7.1. The machine translated sentence t =

⟨t1, ..., tn⟩ and its source sentence counterpart s = ⟨s1, ..., sm⟩ are concatenated and passed as input to the

encoder, which produces d-dimensional hidden state vectors H1, ...,HL for each layer 1 ≤ ℓ ≤ L, where

Hℓ ∈ R(n+m)×d. Next, all hidden states are fed to a scalar mix module (Peters et al., 2018b) that learns a
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weighted sum of the hidden states of each layer of the encoder, producing a new sequence of aggregated hidden

states Hmix as follows:

Hmix = λ

L∑
ℓ=1

βℓHℓ, (7.1)

where λ is a scalar trainable parameter, β ∈ △L, is given by β = sparsemax(ϕ) using a sparse transforma-

tion (Martins and Astudillo, 2016), with ϕ ∈ RL as learnable parameters. As it has been shown in (Rei et al.,

2022a) not all layers are relevant and thus, using sparsemax we learn to ignore irrelevant layers.

For sentence-level models, the hidden state of the first token (<cls>) is used as sentence representation

Hmix,0 ∈ Rd, which, in turn, is passed to a 2-layered feed-forward module in order to get a sentence score

prediction ŷ ∈ R. Moreover, attention matrices A1,1, ...,AL,H for all layers and heads are also recovered as a

by-product of the forward propagation.

Pretraining on Metrics Data. Every year, the WMT News Translation shared task organizers collect human

judgments in the form of DAs. The collective corpora of 2017, 2018, and 2019 contain 24 LPs and a total of

657k samples with source, target, reference, and DA score. We follow the experiments from the previous edition

carried by Zerva et al. (2021) and start by pretraining our QE models on this data using the learning objective

proposed by UniTE (Wan et al., 2022), which incorporates reference translations into training and thus acts as

data augmentation.

Setting pretrained transformers as encoders. We follow the recent trend (Kepler et al., 2019b; Ranasinghe

et al., 2020) and experiment with three different pretrained multilingual transformers as the encoder layer of

our models: XLM-R Large (Conneau et al., 2020),3 InfoXLM Large (Chi et al., 2021),4 and RemBERT (Chung

et al., 2021).5 XLM-R and InfoXLM consist of 24 encoder blocks with 16 attention heads each, whereas

RemBERT has 32 encoder blocks with 18 attention heads each.

7.3.1 Explainable QE

The goal of the Explainable QE task is to identify machine translation errors without relying on word-level

label information. In other words, it can be cast as an unsupervised word-level quality estimation problem,

where explanations can be seen as highlights, representing the relevance of input words w.r.t. the model’s

prediction via continuous scores, aiming at identifying tokens that were not properly translated.

Several explainability methods can be used to extract highlights from a sentence-level model, such as post-

hoc (Ribeiro et al., 2016; Arras et al., 2016) or inherently interpretable methods (Lei et al., 2016; Guerreiro and

Martins, 2021). In our submission, we opted to use attention-based methods as they achieved the best results in

the previous constrained track of the Explainable QE shared task (Fomicheva et al., 2021). Concretely, we take

inspiration in the method we developed in the previous chapter (Treviso et al., 2021), which consists of scaling

attention weights by the ℓ2-norm of value vectors (Kobayashi et al., 2020) and finding the attention heads with

the best performance on the dev set, and propose two new modifications:

3https://huggingface.co/xlm-roberta-large
4https://huggingface.co/microsoft/infoxlm-large
5https://huggingface.co/google/rembert
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Figure 7.2: Our Head Mix component. At each layer ℓ, the hidden states hℓ,h ∈ Rn×dh for each head h are associated with
learnable coefficients γℓ ∈ △H , and are subsequently aggregated and multiplied by learnable coefficients β ∈ △L, which
are finally summed in order to produce a final bottlenecked representation Hmix ∈ Rn×d scaled by γ ∈ R.

• Attention × GradNorm: Following the findings of Chrysostomou and Aletras (2022), we decided to

extract explanations that consider both attention and gradient information. More precisely, we propose to

scale the attention weights Aℓ,h ∈ Rn×n by the ℓ2-norm of the gradient of value vectors Vℓ,h ∈ Rn×dh :

Aℓ,h ⊙ ∥∇Vℓ,h
∥2, (7.2)

where ⊙ represents a broadcasted element-wise multiplication and Vℓ,h = VℓW
V
ℓ,h.

• Head Mix: We reformulate the scalar mix module (Eq. 7.1) to consider different weights for representa-

tions coming from different attention heads hℓ,h ∈ Rn×dh as follows:

Hmix = λ

L∑
ℓ=1

βℓ

H∑
h=1

γℓ,hhℓ,h, (7.3)

where the layer mix weights β ∈ △L are given by β = π(ϕ), and the head mix coefficients γℓ ∈ △H

are given by γℓ = π(θℓ), with λ ∈ R, ϕ ∈ RL and θ ∈ RL×H as learnable parameters. We illustrate

this component in Figure 7.2. We experimented both with a dense (π as softmax) and with a sparse

transformation (π as sparsemax, Martins and Astudillo 2016), which may rule out the contribution of

several heads and layers in the final representation. After training, the Head Mix coefficients can help to

identify attention heads with high validation performance, which is helpful for explaining zero-shot LPs.

Furthermore, since all of our sentence-level models use subword tokenization, to get explanations for an

entire word we follow Treviso et al. (2021) and sum the scores of its word pieces.

Ensembling explanations. We average the explanation scores of different attention heads for our final sub-

missions. We decided which heads to aggregate together by taking the top-64 heads with the highest Head Mix

coefficients βℓ×γℓ,h and comparing their performance on the dev set, picking the top-5 with the highest results.

7.4 Experimental Results

For our experiments, we split the provided development sets into two equal size halves creating a new

internal devset and an internal testset. The resulting sets contain ≈ 500 segments per language pair for both DA
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Direct Assessment MQM

Method en-cs en-ja en-mr km-en ps-en avg. en-de en-ru zh-en avg.

Baseline (Treviso et al., 2021)† 0.602 0.510 0.428 0.636 0.633 0.562 0.529 0.552 0.450 0.510

InfoXLM as encoder
Attn × GradNorm 0.602 0.495 0.417 0.653 0.648 0.563 0.539 0.559 0.474 0.524

+ Soft Head Mix 0.600 0.495 0.426 0.656 0.653 0.566 0.532 0.563 0.467 0.521
+ Sparse Head Mix 0.604 0.503 0.421 0.658 0.660 0.569 0.541 0.551 0.454 0.515

Ensemble 0.641 0.521 0.440 0.669 0.667 0.588 0.580 0.603 0.505 0.563
+ Soft Head Mix 0.621 0.501 0.432 0.681 0.661 0.579 0.567 0.588 0.504 0.553
+ Sparse Head Mix 0.645 0.519 0.450 0.688 0.675 0.595 0.574 0.582 0.484 0.547

RemBERT as encoder
Attn × GradNorm 0.596 0.511 0.427 0.675 0.676 0.577 0.474 0.532 0.448 0.485

+ Soft Head Mix 0.588 0.538 0.430 0.658 0.654 0.574 0.473 0.529 0.455 0.486
+ Sparse Head Mix 0.588 0.534 0.428 0.658 0.652 0.572 0.470 0.530 0.443 0.481

Ensemble 0.609 0.551 0.443 0.702 0.685 0.598 0.516 0.554 0.506 0.525
+ Soft Head Mix 0.613 0.561 0.448 0.699 0.692 0.603 0.521 0.558 0.498 0.526
+ Sparse Head Mix 0.620 0.557 0.447 0.702 0.691 0.604 0.511 0.551 0.503 0.522

Table 7.1: Explainable QE task results in terms of the average of AUC, AP and R@K. †We used InfoXLM to compute the
results for the baseline.

and MQM, word and sentence-level. As for baselines we used our submitted explainer from previous shared

task, concretely, we used the Attn × Norm explainer (Treviso et al., 2021). Moreover, we extract explanations

from the best performing sentence-level models, as evaluated in our internal test set.

Since the explanations are given as continuous scores, they are evaluated against the ground-truth word-

level labels in terms of the Area Under the Curve (AUC), Average Precision (AP), and Recall at Top-K (R@K)

metrics only on the subset of translations that contain errors. Although R@K was considered the main metric

for this task, we optimized internally for the average of all three metrics. Our internal results are shown in

Table 7.1.

Discussion. The results highlight several contrasts between explanations for DA and MQM data: (i) while

RemBERT is useful as an encoder for DA data (outperforms InfoXLM in 3 out of 5 LPs), it is outperformed

by InfoXLM for all MQM LPs; (ii) the Head Mix component improves performance for DA, but it does not

impact significantly the scores for MQM; and (iii) the Sparse Head Mix generally outperforms the Soft Head

Mix for DA, but the trend flips for MQM. On what comes to the explainability methods, the baseline method

(Attn × Norm – scaling the attention weights by the ℓ2-norm of value vectors), which obtained the best results

in the previous edition of the shared task (detailed in Chapter 6), is outperformed by our new method (Attn ×

GradNorm) for both DA and MQM data. Moreover, ensembling explanations from different heads brings further

consistent improvements across the board for all LPs. For the zero-shot setting (en-yo), we build an ensemble

of explanations by using the heads that were more common among the ensembles for all other LPs.

Explainability as word-level QE. Following the work by Fomicheva et al. (2020, 2022a) on exploiting inside

information of a MT system to create an unsupervised approach to QE, we investigate the impact of using

explainability scores to predict word-level tags. Concretely, for each MQM language pair, we use our top

explainer to extract explanations scores ei ∈ RL for all L tokens of the ith input example, and transform them
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Figure 7.3: Investigation of attention heads from our InfoXLM model for the en-de language pair in terms of AUC scores
(left) and sparse Head Mix coefficients βℓ × γℓ,h (right).

to OK/BAD tags by tuning τ ∈ R to maximize the following objective:

1

N

N∑
i=1

MCC(I[ei > τ ],yi), (7.4)

where yi ∈ {0, 1}L represents the ith ground-truth word-level tag sequence, and I is an indicator function

applied element-wise. Once we find an optimal τ⋆ on the dev set, we use it on test time to produce word-level

predictions. We present results using this approach in Table 7.2 for all three MQM language pairs, comparing

with COMETKIWI trained with word and sentence-level losses.6 We note that thresholded explainability scores

achieve competitive performance with COMETKIWI for en-de and en-ru, but lag behind for zh-en by a large

margin. Surprisingly, we improve the results for en-de and en-ru by ensembling both approaches via a simple

OR rule. These results suggest the potential applicability of explainability approaches for unsupervised QE, and

demonstrate that explainability can be used to boost the performance of supervised word-level QE models.

System en-de en-ru zh-en avg.

COMETKIWI (ŷA) 0.2720 0.3279 0.3676 0.3225
Explainability (ŷB) 0.2550 0.3184 0.0787 0.2174
Both (ŷA ∨ ŷB) 0.2815 0.3418 0.3381 0.3205

Table 7.2: Results for unsupervised word-level QE in terms of MCC.

7.5 Identifying Relevant Attention Heads

To circumvent the need of performing a time-consuming grid search to identify plausible attention heads, we

designed the sparse Head Mix component to yield coefficients for each head representation. To better illustrate

the benefits of this approach, we show the AUC scores obtained by each attention head for en-de alongside their

Head Mix coefficients in Figure 7.3. In general, we note that heads from mid-up layers perform better while also

deemed relevant by our sparse Head Mix module. In order to assess this concept more rigorously, we compute

the Spearman’s correlation between the AUC, AP, and R@K scores obtained by each head and the Head Mix

coefficients. We present the results in Table 7.3. We note that the correlations are all positive, and for some

6Submitted to the shared task as part of this work (Rei et al., 2022b).
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Direct Assessment MQM

Metric en-cs en-ja en-mr km-en ps-en en-de en-ru zh-en

AUC 0.3344 0.2139 0.4014 0.5270 0.5173 0.5256 0.5091 0.4328
AP 0.3216 0.1144 0.3241 0.5428 0.5225 0.4717 0.4701 0.3413
R@K 0.3137 0.0910 0.3148 0.4700 0.5014 0.3954 0.4068 0.2101

Table 7.3: Spearman’s correlation between plausibility scores obtained by each head (in terms of AUC, AP, and R@K) and
the sparse Head Mix coefficients from our InfoXLM model.

language pairs they are above 0.5, suggesting a strong agreement. Overall, these results indicate that Head Mix

coefficients can be successfully exploited to prune a large portion of the search space.

7.6 Official Results

We present the official results of our submissions alongside the results from other competitors in Table 7.4.

Overall, we obtained the best results for all but two LPs (km-en and ps-en).

Direct Assessment MQM

Team en-cs en-ja en-mr en-yo km-en ps-en all all/yo en-ru en-de zh-en

Baseline: Random 0.363 0.336 0.167 0.144 0.565 0.614 0.365 0.409 0.135 0.124 0.093
Baseline: OpenKiwi+LIME 0.417 0.367 0.194 0.111 0.580 0.615 0.381 0.435 0.148 0.074 0.048
UT-QE (Azadi et al., 2022) - - - - 0.622 0.668 - - - - -
HW-TSC (Tao et al., 2022) 0.536 0.462 0.280 - 0.686 0.715 - 0.535 0.313 0.252 0.220
IST-Unbabel (this work) 0.561 0.466 0.317 0.234 0.665 0.672 0.486 0.536 0.390 0.365 0.379

Table 7.4: Official results in terms of R@K (Zerva et al., 2022).

7.7 Conclusions and Future Works

We presented the joint contribution of IST and Unbabel to the WMT 2022 Explainable QE shared task.

By incorporating gradient information and designing a Head Mix component, we have refined the impact of

attention heads towards the final prediction, leading to strong explainability performance and providing insights

into the model’s inner workings. In particular, our Head Mix component can be exploited to identify relevant

attention heads at inference time, addressing the need for manual search from our previous method, detailed

in Chapter 6. We have also found that explainability approaches can be applied as a form of unsupervised QE

with a reasonably high accuracy when compared to a strong baseline, and may be used to further boost the

performance of supervised word-level QE models. Overall, our submissions achieved the best official results

for almost all LPs by a considerable margin.

One of the challenges in leveraging attention heads for deriving explanations is that they might not capture

relevant information from other parts of the model. For future work we plan to explore approaches that aggregate

attention weights from multiple layers, such as attention flows (Abnar and Zuidema, 2020), and that consider

the entire layer block, such as ALTI (Ferrando et al., 2022). In the upcoming chapter, we discuss our final

contribution to interpreting transformer-based QE models, where, instead of optimizing model performance, we

focus on optimizing simulability, automatically identifying relevant attention heads in the process.

80



8
Learning to Scaffold: Optimizing Model

Explanations for Quality Estimation

Contents
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Optimizing Explainers for Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4 Parameterized Attention Explainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.7 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

81



In this chapter, we bring together the contributions of multiple chapters in this thesis to propose a novel

approach for improving the quality of explanations for transformer-based quality estimation (QE) models.

In Chapter 3, we laid the foundation for automatic simulability frameworks, which inspired Pruthi et al.

(2022) to propose a new framework that rules out trivial protocols by design, rather than applying ad-hoc

constraints on the explanation. We adopt their framework in this work to design a novel explainability method

inspired by the success of attention-based methods, as detailed in Chapters 5, 6, and 7. Concretely, we propose

an attention-based method that uses sparsity to automatically identify relevant attention heads in transformers.

We achieve this by optimizing forward simulability, where a student model learns to simulate the predictions

of a large teacher model. Our results show that students trained with explanations extracted from our new

method are able to simulate the teacher model more effectively than those produced with previous approaches.

Furthermore, through human annotations, we find that our learned explanations more closely align with how

humans would explain the required decisions.

This chapter is based on (Fernandes et al., 2022), a work co-led with Patrick Fernandes. This chapter

focuses on specific contributions made by the author of this thesis, which includes the co-design of the attention

explainer and the experiments for QE. Nevertheless, it is worth to mention that one key contribution of this

work—not covered in the chapter—is the formulation of the bi-level optimization problem, which we solve by

borrowing ideas from the meta-learning literature and is detailed in our original paper.

8.1 Motivation

While deep learning’s performance has led it to become the dominant paradigm in machine learning, its

relative opaqueness has brought great interest in methods to improve model interpretability. Many recent works

propose methods for extracting explanations from neural networks (§8.6), which vary from the highlighting of

relevant input features (Simonyan et al., 2013; Arras et al., 2016; Ding et al., 2019) to more complex represen-

tations of the reasoning of the network (Mu and Andreas, 2020; Wu et al., 2021). However, are these methods

actually achieving their goal of making models more interpretable? Some concerning findings have cast doubt

on this proposition; different explanations methods have been found to disagree on the same model/input (Neely

et al., 2021; Bastings et al., 2022) and explanations do not necessarily help predict a model’s output and/or its

failures (Chandrasekaran et al., 2018).

In fact, the research community is still in the process of understanding what explanations are supposed to

achieve, and how to assess success of an explanation method (Doshi-Velez and Kim, 2017; Miller, 2019). Many

early works on model interpretability designed their methods around a set of desiderata (Sundararajan et al.,

2017; Lertvittayakumjorn and Toni, 2019) and relied on qualitative assessment of a handful of samples with

respect to these desiderata; a process that is highly subjective and is hard to reproduce. In contrast, recent

works have focused on more quantitative criteria: correlation between explainability methods for measuring

consistency (Jain and Wallace, 2019; Serrano and Smith, 2019), sufficiency and comprehensiveness (DeYoung

et al., 2020), and simulability: whether a human or machine consumer of explanations understands the model

behavior well enough to predict its output on unseen examples (Lipton, 2018; Doshi-Velez and Kim, 2017).

Simulability, in particular, has a number of desirable properties, such as being intuitively aligned with the goal

of communicating the underlying model behavior to humans and being measurable in manual and automated
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Figure 8.1: Illustration of our SMaT framework. First, a student model is trained to recover the classifier’s predictions
and to match the explanations given by the explainer. Then, the explainer is updated based on how well the trained student
simulates the classifier (without access to explanations). In practice, we repeat these two consecutive processes for several
steps. Green arrows and boxes represent learnable components.

experiments (Treviso and Martins, 2020; Hase and Bansal, 2020; Pruthi et al., 2022).

For instance, Pruthi et al. (2022) proposed a framework for automatic evaluation of simulability that, given

a teacher model and explanations of this model’s predictions, trains a student model to match the teacher’s

predictions. The explanations are then evaluated with respect to how well they help a student learn to simulate

the teacher (§8.2). This is analogous to the concept in pedagogy of instructional scaffolding (Van de Pol et al.,

2010), a process through which a teacher adds support for students to aid learning. More effective scaffolding—

in our case, better explanations—is assumed to lead to better student learning. However, while this previous

work provides an attractive way to evaluate existing explanation methods, it stops short of proposing a method

to actually improve them.

In this work, we propose to learn to explain by directly learning explanations that provide better scaffolding

of the student’s learning, a framework we term Scaffold-Maximizing Training (SMaT). Figure 8.1 illustrates

the framework: the explainer is used to scaffold the student training, and is updated based on how well the

student does at test time at simulating the teacher model. We take insights from research on meta-learning (Finn

et al., 2017; Raghu et al., 2021), formalizing our setting as a bi-level optimization problem and optimizing it

based on higher-order differentiation (§8.3). Importantly, our high-level framework makes few assumptions

about the model we are trying to explain, the structure of the explanations or the modalities considered. We then

introduce a parameterized attention-based explainer optimizable with SMaT that works for any model with

attention mechanisms (§8.4).

We experiment on 6 language pairs of the task of translation quality estimation (QE) using pretrained trans-

former models (§8.5). We find that our framework is able to effectively optimize explainers across all language

pairs, where students trained with learned attention explanations achieve better simulability than baselines

trained with static attention or gradient-based explanations. We further evaluate the plausability of our ex-

planations (i.e., whether produced explanations align with how people would justify a similar choice) using

human-labeled explanations and find that explanations learned with our learnable attention-based explainer are

often more plausible than the static explainers considered. Overall, the results reinforce the utility of scaffolding

as a criterion for evaluating and improving model explanations, and the effectiveness of attention-based methods

for interpreting multilingual transformed-based models.

83



8.2 Background

Consider a model T : X → Y trained on some dataset Dtrain = {(xi, yi)}Ni=1. For example, this could be a

text or image classifier that was trained on a particular downstream task (with Dtrain being the training data for

that task). Post-hoc interpretability methods typically introduce an explainer module ET : T × X → E that

takes a model and an input, and produces an explanation e ∈ E for the output of the model given that input,

where E denotes the space of possible explanations. For instance, interpretability methods using saliency maps

define E as the space of normalized distributions of importance over L input elements e ∈ △L (where △L is

the (L− 1)-probability simplex).

Pruthi et al. (2022) proposed an automatic framework for evaluating explainers that trains a student model

Sθ : X → Y with parameters θ to simulate the teacher (i.e., the original classifier) in a constrained setting.

For example, the student can be constrained to have less capacity than the teacher by using a simpler model or

trained with a subset of the dataset used for the teacher (D̂train ⊊ Dtrain).

In this framework, a student Sθ is trained according to θ∗ = argminθ E(x,y)∼D̂train
[Lsim(Sθ(x), T (x))], and

its simulability SIM(Sθ∗ , T ) is measured on an unseen test set. The actual form of Lsim and SIM(Sθ∗ , T ) is

task-specific. For example, in a classification task, we use cross-entropy as the simulation loss Lsim over the

teacher’s predictions, while the simulability of a model Sθ∗ can be defined as the simulation accuracy, i.e., what

percentage of the student and teacher predictions match over a held-out test set Dtest:

SIM(Sθ∗ , T ) = E(x,y)∼Dtest [1{Sθ∗(x) = T (x)}]. (8.1)

Next, the training of the student is augmented with explanations produced by the explainer E. We introduce a

student explainer ES : S ×X → E , (the S-explainer) to extract explanations from the student, and regularizing

these explanations on the explanations of teacher (the T -explainer), using a loss Lexpl that takes explanations

for both models:

θ∗E = argmin
θ

E(x,y)∼D̂train

[
Lsim (Sθ(x), T (x))︸ ︷︷ ︸

simulability loss

+β Lexpl (ES(Sθ, x), ET (T, x))︸ ︷︷ ︸
explainer regularizer

]
. (8.2)

For example, Pruthi et al. (2022) considered as a teacher explainer ET various methods such as LIME

(Ribeiro et al., 2016), Integrated Gradients (Sundararajan et al., 2017), and attention mechanisms, and explored

both attention regularization (using Kullback-Leibler divergence) and multi-task learning to regularize the stu-

dent.

The key assumption surrounding this evaluation framework is that a student trained with good explana-

tions should learn to simulate the teacher better than a student trained with bad or no explanations, that is,

SIM
(
Sθ∗

E
, T
)
> SIM (Sθ∗ , T ) . For clarity, we will refer to the simulability of a model Sθ∗

E
trained using expla-

nations as scaffolded simulability.

8.3 Optimizing Explainers for Teaching

In this work, we extend the previously described framework to make it possible to directly optimize the

teacher explainer so that it can most effectively teach the student the original model’s behavior. To this end, we
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consider a parameterized T -explainer EϕT
with parameters ϕT , and equivalently a parameterized S-explainer

EϕS
with parameters ϕS , leading to the following loss function for learning the student:

Lstudent(Sθ, EϕS
, T, EϕT

, x) = Lsim

(
Sθ(x), T (x)

)
+ βLexpl

(
EϕS

(Sθ, x), EϕT
(T, x)

)
. (8.3)

While this framework is flexible enough to rigorously and automatically evaluate many types of explana-

tions, calculating scaffolded simulability requires an optimization procedure to learn the student and S-explainer

parameters θ, ϕS alongside finding the T -explainer parameters ϕT that optimize scaffolded simulability. To

overcome this challenge, we draw inspiration from the extensive literature on meta-learning (Schmidhuber,

1987; Finn et al., 2017), and frame the optimization as a bi-level optimization problem, with an inner step for

updating the student’s parameters, θ, ϕS , and an outer update step for the teacher’s parameters, ϕT . Further

details on the optimization procedure can be found in (Fernandes et al., 2022).

8.4 Parameterized Attention Explainer

As a key contribution of this work, we introduce a novel parameterized attention-based explainer that can

be learned with our framework. Transformer models (Vaswani et al., 2017) are currently the most successful

deep-learning architecture across a variety of tasks (Shoeybi et al., 2019; Wortsman et al., 2022). Underpinning

their success is the multi-head attention mechanism, which computes a normalized distribution over the 1 ≤

i ≤ L input elements in parallel for each head h:

Ah = softmax(Qh(Kh)⊤), (8.4)

where Qh = [qh
1 , · · · , qh

L] and Kh = [kh
1 , · · · ,kh

L] are the query and key linear projections over the input ele-

ment representations for head h. Attention mechanisms have been used extensively for producing saliency maps

(Wiegreffe and Pinter, 2019; Vashishth et al., 2019) and while some concerns have been raised regarding their

faithfulness (Jain and Wallace, 2019), overall attention-based explainers have been found to lead to relatively

good explanations in terms of plausibility and simulability (Treviso and Martins, 2020; Kobayashi et al., 2020;

Pruthi et al., 2022).

However, to extract explanations from multi-head attention, we have two important design choices:

1. Single distribution selection: Since self-attention produces an attention matrix Ah ∈ RL×L, we need to

pool these attention distributions to produce a single saliency map e ∈ △L. Typically, the distribution from

a single token (such as [CLS]) or the average of the attention distributions from all tokens 1 ≤ i ≤ L are

used.

2. Head selection: We also need to pool the distributions produced by each head. Typical ad-hoc strategies

include using the mean over all heads for a certain layer (Fomicheva et al., 2022a) or selecting a single head

based on plausibility on validation set (Treviso et al., 2021). However, since transformers can have hundreds

or even thousands of heads, these choices rely on human intuition or require large amounts of plausibility

labels.

In this work, we approach the latter design choice in a more principled manner. Concretely, we associate

each head with a weight and then perform a weighted sum over all heads. These weights are learned such
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Figure 8.2: Our parameterized attention-based explainer. Dashed red boxes represent learned parameters λT =
sparsemax(ϕT ) ∈ △H , weighting average attention logits of each head 1 ≤ h ≤ H . A softmax over the weighted
sum generates the attention probabilities.

that the resulting explanation maximizes simulability, as described in §8.3. More formally, given a model TθT

and its query and key projections for an input x for each layer and head h ≤ H , we define a parameterized,

differentiable attention explainer EϕT
as

sh =
1

L

L∑
i=1

(qh
i )

⊤Kh, EϕT
(T, x) = softmax

(
H∑

h=1

λh
Ts

h

)
, (8.5)

where the teacher’s head coefficients λT ∈ △H are defined as λT = normalize(ϕT ) with ϕT ∈ RH . Figure 8.2

illustrates each step of our parameterized attention explainer.

In this formulation, sh ∈ RL represents the average unnormalized attention logits over all input elements,

which are then combined according to λT and normalized with softmax to produce a distribution in △L. We

apply a normalization function to head coefficients involved to create a convex combination over all heads in all

layers. In this work we consider the sparse projection function normalize := sparsemax (Martins and Astudillo,

2016) due to its benefits in terms of interpretability, since it leads to many heads having zero weight.

8.5 Experiments

We use JAX (Bradbury et al., 2018) to implement the higher-order differentiation, and use pretrained trans-

former models from the Huggingface Transformers library (Wolf et al., 2020), together with Flax (Heek et al.,

2020). We train the teacher model with AdamW (Loshchilov and Hutter, 2019), and we train the student model

with simple SGD updates (inner loop). We also use scalar mixing (Peters et al., 2018b) to pool representations

from different layers automatically.1 We train students with a teacher explainer in three settings:

• No Explainer: No explanations are provided, and no explanation regularization is used for training the

student (i.e. β = 0 in Equation 8.3). We refer to students in this setting as baseline students.

• Static Explainer: Explanations for the teacher model are extracted with five commonly-used saliency-

based explainers: (1) L2 norm of gradients; (2) a gradient × input explainer (Denil et al., 2014); (3) an

integrated gradients explainer (Sundararajan et al., 2017); and attention explainers that uses the mean

1While scalar mixing reduced variance of student performance, SMaT also worked with other common pooling methods.
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2,100 4,200 8,400

No Explainer .7457 [.7366:.7528] .7719 [.7660:.7802] .7891 [.7860:.7964]

Gradient L2 .8065 [.8038:.8268] .8535 [.7117:.8544] .8638 [.8411:.8657]
Gradient × Input .6846 [.6781:.6894] .6922 [.6885:.6965] .7141 [.7136:.7147]
Integrated gradients .6686 [.6677:.6694] .7086 [.6994:.7101] .7036 [.6976:.7037]
Attention (all layers) .8120 [.7955:.8125] .8193 [.8186:.8280] .8467 [.8464:.8521]
Attention (last layer) .7486 [.7484:.7534] .7720 [.7672:.7726] .7798 [.7717:.7814]

Attention (learned) .8156 [.8096:.8183] .8630 [.8412:.8724] .8561 [.8512:.8689]

Table 8.1: Simulability results, in terms of Pearson correlation, on the ML-QE dataset. Underlined values represent better
performance than baseline with non-overlapping IQR.

pooling over attention from (4) all heads in the model and (5) from the heads of the last layer (Fomicheva

et al., 2022a; Vafa et al., 2021). More details can be found in §F.1.

• Learned Explainer: Explanations are extracted with the explainer described in §8.4, with coefficients

for each head that are trained with SMaT jointly with the student. We initialize the coefficients such that

the model is initialized to be the same as the static attention explainer (i.e., performing the mean over all

heads).

Independently of the T -explainer, we always use a learned attention-based explainer as the S-explainer,

considering all heads except when the T -explainer is a static attention explainer that only considers the last

layers’ heads, where we do the same for the S-explainer. We use the Kullback-Leibler divergence as Lexpl, and

we set β = 5 for attention-based explainers and β = 0.2 for gradient-based explainers (since we found smaller

values to be better). We set Lsim as the mean squared error loss.

Data and evaluation. QE is the task of predicting a quality score given a sentence in a source language and a

translation in a target language from a machine translation system. Interpreting quality scores of machine trans-

lated outputs is a problem that has received recent interest (Fomicheva et al., 2021) since it allows identifying

which words were responsible for a bad translation. We use the MLQE-PE dataset (Fomicheva et al., 2022b),

which contains 7,000 training samples for each of seven language pairs alongside word-level human annotation.

We use as the base model a pretrained XLM-R-base (Conneau et al., 2020), a multilingual model with 12 layers

and 12 heads in each (total of 144 heads).

We exclude one of the language pairs in the dataset (si-en) since the XLM-R model did not support it,

leading to a training set with 42,000 samples. We reuse the same training set for both the teacher and student,

sampling a subset for the latter. We vary the number of samples the student is trained with between 2,100

(5%), 4,200 (10%) and 8,400 (20%). Since this is a regression task, we evaluate simulability using the Pearson

correlation coefficient between student and teacher’s predictions.2 The teacher achieves 0.63 correlation on the

test set. For each setting, we train five students with different seeds. Since there is some variance in students’

performance (we hypothesize due to the small training sets) we report the median and interquantile range

(IQR) around it (relative to the 25-75 percentile).

2Pearson correlation is the standard metric used to evaluate sentence-level QE models.
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EN-DE EN-ZH ET-EN NE-EN RO-EN RU-EN OVERALL

src. tgt. src. tgt. src. tgt. src. tgt. src. tgt. src. tgt. src. tgt.

Gradient L2 0.64 0.65 0.65 0.49 0.67 0.61 0.68 0.55 0.72 0.68 0.65 0.54 0.67 0.59
Gradient × Input 0.58 0.60 0.61 0.51 0.60 0.54 0.61 0.49 0.64 0.59 0.58 0.51 0.61 0.54
Integrated Gradients 0.59 0.60 0.63 0.49 0.60 0.52 0.64 0.48 0.64 0.59 0.60 0.51 0.62 0.53
Attention (all layers) 0.60 0.63 0.68 0.52 0.60 0.61 0.58 0.55 0.66 0.70 0.62 0.55 0.62 0.59
Attention (last layer) 0.51 0.49 0.61 0.49 0.51 0.50 0.55 0.48 0.52 0.57 0.56 0.50 0.54 0.50
Attention (learned) 0.64 0.65 0.68 0.52 0.66 0.64 0.66 0.54 0.71 0.70 0.61 0.54 0.66 0.60

Attention (best layer)* 0.64 0.65 0.69 0.64 0.64 0.68 0.68 0.68 0.71 0.76 0.64 0.59 0.65 0.65
Attention (best head)* 0.67 0.67 0.70 0.65 0.70 0.70 0.70 0.69 0.73 0.75 0.67 0.60 0.67 0.66

Table 8.2: Plausibility results for source and target inputs for each language pair of the MLQE-PE dataset in terms of AUC.
* represents supervised methods that use human labels in some form.

Simulability results. Table 8.1 shows the results for the three settings. Similar to other tasks, the attention

explainer trained with SMaT leads to students with higher simulability than baseline students and similar or

higher than static explainer across all training set sizes. Curiously, the Grad. L2 explainer achieves very high

simulability for this task. It even has a higher median simulability score than SMaT for 8,400 samples. However,

we attribute this to variance in the student training set sampling (that could lead to an imbalance in language

pair proportions) which could explain why SMaT performance degrades with more samples. For this task, the

gradient-based explainers always degrade simulability across the tested training set size. It also seems that

using only the last layer’s attention is also ineffective at teaching students, achieving the same performance as

the baseline.

Plausibility analysis. We select the median model trained with 4,200 samples and follow the approach de-

vised in the Explainable QE shared task to evaluate plausibility (Fomicheva et al., 2021), which consists of

evaluating the human-likeness of explanations in terms of AUC only on the subset of translations that contain

errors. The results are shown in Table 8.2. We note that for all language pairs, our learned explainer performs on

par or better than static explainers, and only being surpassed by Grad. L2 in the source-side over all languages.

Comparing with the best attention layer/head, an approach used by Fomicheva et al. (2022a); Treviso et al.

(2021), our explainer achieves similar AUC scores for source explanations, but lags behind the best attention

layer/head for target explanations on *-EN language pairs. However, our approach sidesteps human annotation

and avoids the cumbersome approach of independently computing plausibility scores for all heads.

Head coefficients. A key benefit of sparsemax is that it produces a small subset of active heads. The heatmaps

of attention coefficients (λT ) learned after training, shown in Figure 8.3 (left), exemplify this. We can see that

all heads of the first layer are active (λh
T > 0), whereas the rest active heads are spread throughout mid-up

layers. We also found empirically that active heads are usually associated with attention heads that lead to top

plausibility scores in Figure 8.3 (right), further reinforcing our good plausibility findings. To better quantify this

notion, we computed Spearman’s correlation results between our learned head coefficients and the AUC scores

obtained by each head. Moreover, as suggested by Treviso et al. (2021), heads from mid-up layers are usually

more plausible for QE. Thus, we computed correlations with and without the heads from the first layer, which

were all deemed active by SMaT. We present the results in Table 8.3 for all language pairs. Except for en-zh,
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Figure 8.3: Head coefficients learned by the model, illustrating that only a small subset of attention heads are deemed
relevant (left), and the recall at recovering the 3 most plausible attention heads from this subset (right).

SIDE EN-DE EN-ZH ET-EN NE-EN RO-EN RU-EN

Source (w/ 1st layer) 0.1039 0.1034 0.1660 0.2403 0.1643 -0.1017
Source (w/o 1st layer) 0.3039 -0.2662 0.2786 0.2841 0.2598 0.3023

Target (w/ 1st layer) 0.0812 0.0722 -0.0052 -0.0697 0.0362 -0.1052
Target (w/o 1st layer) 0.2996 -0.0868 0.2939 0.2974 0.3108 0.2515

Table 8.3: Spearman’s correlation between AUC scores obtained by each head and the head coefficients learned by our
explainer.

our findings indicate that the head coefficients of mid-up layers learned by SMaT exhibit a positive correlation

with plausibility scores, typically falling within the range of [0.2, 0.3]. These findings suggest that examining

the learned coefficients can serve as an effective approach for identifying plausible attention heads without the

need for manual search.

8.6 Related Work

Explainability for text. Several works propose explainability methods to interpret decisions made by NLP

models. Besides gradient and attention-based approaches already mentioned, some extract explanations by

running the models with perturbed inputs (Ribeiro et al., 2016; Feng et al., 2018; Kim et al., 2020). Others

even define custom backward passes to assign relevance for each feature (Bach et al., 2015). These methods

are commonly employed together with post-processing heuristics, such as selecting only the top-k tokens with

higher scores for visualization. Another line of work seeks to build a classifier with inherently interpretable

components, such as methods based on attention mechanisms and rationalizers (Lei et al., 2016; Bastings et al.,

2019).

Evaluation of explainability methods. As mentioned in the introduction, early works evaluated explanations

based on properties such as consistency, sufficiency and comprehensiveness. Jacovi and Goldberg (2020) rec-

ommended the use of a graded notion of faithfulness, which the ERASER benchmark quantifies using the idea

of sufficient and comprehensive rationales, alongside compiling datasets with human-annotated rationales for

calculating plausibility metrics (DeYoung et al., 2020). Given the disagreement between explainability meth-

ods, Neely et al. (2021) showed that without a faithful ground-truth explanation it is impossible to determine

which method is better. Diagnostic tests such as the ones proposed by Adebayo et al. (2018); Wiegreffe and
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Pinter (2019) and Atanasova et al. (2020) are more informative yet they do not capture the main goal of an

explanation: the ability to communicate an explanation to a practitioner.

Simulability. A new dimension for evaluating explainability methods relies on the forward simulation pro-

posed by Lipton (2018) and Doshi-Velez and Kim (2017), which states that humans should be able to correctly

simulate the model’s output given the input and the explanation. Chandrasekaran et al. (2018); Hase and Bansal

(2020); Arora et al. (2022) analyze simulability via human studies across text classification datasets. Treviso

and Martins (2020) designed an automatic framework where students (machine or human) have to predict the

model’s output given an explanation as input. Similarly, Pruthi et al. (2022) proposed the simulability frame-

work that was extended in our work, where explanations are used to regularize the student rather than passed as

input.

Learning to explain. The concept of simulability also opens a path to learning explainers. In particular

Treviso and Martins (2020) learn an attention-based explainer that maximizes simulability. However, directly

optimizing for simulability sometimes led to explainers that learned trivial protocols (such as selecting only

punctuation symbols or stopwords to leak the label). Our approach of optimizing a teacher-student framework is

similar to approaches that optimize for model distillation (Zhou et al., 2022). However, these approaches modify

the original model rather than introduce a new explainer module. Raghu et al. (2021) propose a framework

similar to ours for learning commentaries for inputs that speed up and improve the training of a model. However

commentaries are model-independent and are optimised to improve performance on the real task. Rationalizers

(Chen et al., 2018; Jacovi and Goldberg, 2021; Guerreiro and Martins, 2021) also directly learn to extract

explanations, but can also suffer from trivial protocols.

8.7 Conclusion and Future Works

We proposed a framework for directly optimizing explanations of the model’s predictions to improve the

training of a student simulating the said model. Concretely, to this end, we introduced a parameterized attention-

based explainer that is optimizable by our framework. By experimenting on QE, we found that explanations

learned with our explainer both lead to students that simulate the original model more accurately and are more

aligned with how people explain similar decisions when compared to previously proposed methods. On top of

that, our parameterized attention explainer provides a principled way for discovering relevant attention heads in

transformers.

We only explored learning attention-based explainers, but our method can also be used to optimize other

types of explainability methods, including gradient-based ones, by introducing learnable parameters in their

formulations. Another promising future research direction is to explore using SMaT to learn explanations other

than saliency maps, such as free-text explanations produced by large language models (Yordanov et al., 2022;

Ross et al., 2022a).
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In this concluding chapter, we provide a succinct summary of the key findings and contributions made in this

thesis. Additionally, we examine open problems alongside identifying promising paths for subsequent research.

9.1 Summary of Contributions

This thesis explored the role of simulability and sparsity to improve the interpretability of neural networks,

particularly in the context of quality estimation (QE) for machine translation. In Chapter 3, we designed a

flexible framework for evaluating explainability methods in terms of forward simulability (Doshi-Velez and

Kim, 2017) in an automatic way, allowing us to compare several approaches under a single, human-aligned

perspective. Building on this framework, we introduced a new explainability method that leverages sparse

attention to maximize simulability while also leading to plausible explanations.

Chapter 4 introduced CREST, a framework that incorporates learnable sparse signals to guide the generation

of synthetic counterfactuals using masked language models, and subsequently leverages these counterfactuals

to regularize selective rationales. We conducted a rigorous evaluation and showed that CREST counterfactuals

often lead to improvements in terms of model robustness and rationale quality. With the counterfactual generator

in place, we also proposed an automatic approach to evaluate explainability methods based on counterfactual

simulability, revealing that our approach is especially effective in learning contrastive behavior.

We presented Sparsefinder in Chapter 5, an efficient and interpretable alternative to the multi-head attention

mechanism found in transformers. This novel approach trains a compact student model to predict the sparse at-

tention patterns of a larger teacher model trained with α-entmax attention, effectively reducing computation time

when compared to a vanilla transformer. Notably, while Sparsefinder seeks to reduce computational cost, it also

designed to preserve the interpretable behavior of learned attention heads, standing out from related approaches.

In the second part of this thesis, in Chapter 6, we collaborated with the Unbabel AI team to participate in

the Explainable Quality Estimation Shared Task. Driven by prior research on connecting explainability with

word-level QE (Fomicheva et al., 2022a), we investigated various explainability methods, such as gradient,

erasure, attention, and rationalization approaches, while also proposing new ways to interpret decisions made

by modern QE models based on pretrained transformers. In particular, we explored the role of single attention

heads in identifying word-level translation errors, leading to winning submissions in nearly all language pairs.

Building on these findings, more plausible and practical explainers that leverage sparsity were developed

in Chapter 7. More precisely, we addressed the weakness of manual search of attention heads by designing a

sparse bottleneck layer called Sparse Head Mix, which aggregates hidden states from selected attention heads

for sentence-level predictions. By combining attention with gradient information and leveraging coefficients

from Sparse Head Mix, we automatically identified relevant attention heads, improving interpretability and

alleviating manual search. These innovations heavily contributed to our success in winning the shared task for

7 out of 9 language pairs.

In Chapter 8, we integrated the contributions from multiple chapters to propose a novel approach for im-

proving explanations for transformer-based QE models. Building on the foundations of automatic simulability,

we developed an attention-based method that uses sparsity to automatically identify relevant attention heads in

transformers by optimizing forward simulability. We showed that our explainer not only learns to maximize

simulability, but also produces explanations that better align with human intuition.



In summary, we have found that simulability serves as a valuable tool for evaluating and designing more

plausible and robust explainers, while sparsity can be an important factor for improving the explainability of

transformer-based models. Our empirical evaluations reveal that attention-based methods often outperform

other approaches for explaining QE models, and that sparsity can be effectively employed to identify relevant

inner components of the model, such as attention heads, as well as identifying influential words in the input.

These sparse signals not only guided the creation of efficient attention mechanisms, but also offered valuable

information for counterfactual generation. Our successful strategies in this area led to winning submissions

in two consecutive editions of the Explainable Quality Estimation Shared Task, in 2021 and 2022, further

highlighting the relevance and effectiveness of our approaches.

9.2 Open Problems and Future Directions

The work presented in this thesis can serve as a base for future research on interpretability in neural net-

works, particularly in the context of the QE task. We believe that the insights gained from our investigation

of simulability and sparsity can be applied to other tasks and domains, such as language modeling and image

recognition, potentially broadening the impact of these techniques. In spite of this, many open problems and

limitations remain.

Theoretical Foundation for Automatic Simulability. Despite our initial efforts in showing the feasibility

and effectiveness of our automatic simulability framework in Chapter 3, a more comprehensive theory that clar-

ifies its training dynamics, possibly generalizing to related frameworks, is currently missing. Such a theory

could elucidate the emergence of trivial protocols and suggest potential solutions without resorting to ad-hoc

strategies. A promising future direction on this line involves examining V-information (Xu et al., 2020), a

generalization of information theory to the case where agents are constrained to be in a function family V .

Importantly, we may constrain V to an arbitrary function space, making it possible to produce V-information

through data processing. This generalization contrasts with classical information theory, where the data pro-

cessing inequality ensures that new information can never be produced through processing (Cover and Thomas,

2012). That is, for inputs X and outputs Y , and a certain V , it is possible that

IV(h(X), Y ) > IV(X,Y ), (9.1)

where h is a data processing function. This is well-suitable for our simulability framework, as the layperson can

be conceptualized as the family class V , and the explainer can be cast as the processing step h. In other words,

this structure may offer a theoretical basis for learning explanations that are both informative and non-trivial

within the context of the communication game.

Counterfactuals for QE. In Chapter 4 we presented a framework for generating textual counterfactuals,

which we use for text classification and natural language inference. However, it remains an open problem how

this framework can be used to generate counterfactuals for more complex tasks, such as QE, for which generat-

ing counterfactuals is not straightforward due to the asymmetry in the semantics of ground truth scores. That is,

although transforming a good translation into a bad one is relatively simple, correcting a bad translation is more



demanding—a task known as Automatic Post-Editing. Large Language Models (LLMs) could potentially ad-

dress this issue, as their ability to perform many multilingual tasks might enable them to develop the necessary

capabilities for this problem, possibly with the guidance of sparse signals provided by explainability methods.

Effectively Exploiting Sparsity in Modern Hardware. Effectively exploiting sparsity to improve efficiency

in neural networks is challenging, as it is often unclear beforehand which network components will be re-

quired for subsequent computations, and practical implementations tend to be reliant on specific hardware.

Sparsefinder, presented in Chapter 5, represents an initial effort to leverage sparsity patterns to improve the

efficiency of self-attention in transformers. Even though it enjoys subquadratic time complexity and runs faster

than a vanilla transformer, it remains slower than alternative methods in practice due to hardware constraints.

Nevertheless, given its flexibility, the potential applications of sparsity in large transformers are promising. A

possible path is to leverage this adaptable property and empower sparsity to identify a subset of efficient atten-

tion kernels that can reproduce specific attention patterns in linear time, reducing the overall computational load

when compared to materializing the standard quadratic attention matrix. To this end, we can consider a set of

k efficient kernels K1, ...,Kk that receive query Q ∈ Rn×d and key K ∈ Rn×d matrices in order to produce a

mixture of attention logits:

p = α-entmax(θ),with θ ∈ Rk,

Z = p1K1(Q,K) + p2K2(Q,K) + · · ·+ pkKk(Q,K),

which are then used to compute the regular attention operation, as defined in Eq. 2.6. In this way, a high effi-

ciency can be achieved by only computing kernels for which pi > 0, as long as ∥p∥0 ≤ k ≪ n. Another avenue

involves leveraging deterministic sparse transformations, such as α-entmax, to better manage instability issues

during the training of mixture-of-experts models (Fedus et al., 2022), which struggle during backpropagation

due to the differentiability properties of top-k operations (Zoph et al., 2022).

Explanations for Closed LLMs. With the rapid rise of LLMs in popularity, it is likely that they will be

increasingly employed for a variety of multilingual tasks, including MT and QE, possibly involving the use of

closed LLMs—models accessible only through APIs or interfaces without the ability to inspect or modify their

underlying architecture. Not having access to the models’ internal components directly affects the approaches

proposed in this thesis, as nearly all of them depend on extracting information from built-in mechanisms, such as

attention weights. An exception is our simulability framework proposed in Chapter 3, which is flexible and can

be applied to learn post-hoc explainers without requiring the access to the inner workings of the teacher, allowing

them to operate on top of closed LLMs. Therefore, an interesting direction is to cast the layperson (student) as

a smaller LM, leading to a communication game between two LMs mediated by a learnable sparse explainer.

For instance, consider a large LM T that receives a prompt x as input and produces an outcome y, along

with an explainer module E that constructs a message m for S, a smaller LM that tries to replicate T ’s outcome

given the information conveyed by m. The communication between these three agents depends on the task

prompted to T , which influences the format of its outcome (single or multiple tokens) and paves the way for

numerous explainability directions:



• Highlighting decisions: If the outcome y is a single result (e.g., a quality assessment) or a sequence of

tokens (e.g., a translation), the explainer E could be a differentiable attention module—as proposed in

Chapter 3—that learns a distribution over the prompt tokens x, guiding S towards the same decisions as T .

• Highlighting rationales: If the outcome includes a decision y and a rationale z (e.g., when asking the

model to explain its own decision), the explainer E could also focus on specific parts of the rationale z,

being cautious not to leak the label y to S. The communication part of the framework used in Chapter 8

is suitable in this case, as it only uses explanations during training to regularize S.

• Producing free-text explanations: In addition to highlighting input tokens, LLMs’ self-rationalization

capabilities can be employed to generate informative explanations. To this end, we could use the previous

approaches to create a message m, and ask S to predict both the outcome y and the rationale z. This

strategy resembles knowledge distillation (Kim and Rush, 2016), but differs in handling the message m:

using it to both to regularize S and as a gold target.

• Evaluating self-rationales: Besides creating new explainers, we can also assess the quality of self-

rationalization by examining the success of the communication.

Although highlights and free-text explanations are given as examples, our simulability framework can handle

different message types, such as prototypes or structured explanations, leading to promising research avenues.

Furthermore, this direction is linked to the theoretical foundation for simulability, which can assist in providing

better theoretical guarantees prior to costly experiments.
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A.1 Classifiers experimental setup (Table 3.3)

We chose our classifiers so that they are close to the models used by related works (Jain and Wallace,

2019; Wiegreffe and Pinter, 2019; Bastings et al., 2019). For all models, we calculated their accuracy on

the dev set after each epoch. At the end of training we selected the model with the best validation accuracy.

We experimented with two classes of classifiers: a simple RNN with attention as in Jain and Wallace (2019);

Wiegreffe and Pinter (2019); and the rationalizer models of Lei et al. (2016) and Bastings et al. (2019) which

sample binary masks from Bernoulli and HardKuma distributions, respectively.

A.1.1 RNNs with attention

For the text classification experiments, each input word xi is mapped to 300D-pretrained GloVe embed-

dings (Pennington et al., 2014) from the 840B release,1 kept frozen, followed by a bidirectional LSTM layer

(BiLSTM) resulting in vectors h1, . . . ,hn. We score each of these vectors using the additive formulation of

Bahdanau et al. (2015), applying an attention transformation to convert the resulting scores s ∈ Rn to a prob-

ability distribution π ∈ △n. We use this to compute a contextual vector c =
∑n

i=1 πihi, which is fed into the

output softmax layer that predicts ŷ. For NLI, the input x is a pair of sentences (a premise and an hypothesis),

and the classifier C is similar to the the above, but with two independent BiLSTM layers, one for each sentence.

In the attention layer, we use the last hidden state of the hypothesis as the query and the premise vectors as keys.

We used the AdamW Loshchilov and Hutter (2019) optimizer for all experiments. We tuned two hyperpa-

rameters: learning rate within {0.003,0.001, 0.0001}, and l2 regularization within {0.01, 0.001,0.0001, 0}.

We picked the best configuration by doing a grid search and by taking into consideration the accuracy on the

validation set (selected values in bold). Table A.1 shows all hyperparameters set for training.

HYPERPARAM. SST IMDB AGNEWS YELP SNLI

Word embeddings size 300 300 300 300 300
BiLSTM hidden size 128 128 128 128 128
Merge BiLSTM states concat concat concat concat concat
Batch size 8 16 16 128 32
Number of epochs 10 10 5 5 10
Early stopping patience 5 5 3 3 5
Learning rate 0.001 0.001 0.001 0.001 0.001
ℓ2 regularization 0.0001 0.0001 0.0001 0.0001 0.0001

Table A.1: RNNs training hyperparameters for text classification and NLI datasets.

A.1.2 Bernoulli and HardKuma

We used the implementation of Bastings et al. (2019),2 which includes a reimplementation of the generator-

encoder model from (Lei et al., 2016). The model used for text classification is a RNN-based generator followed

by a RNN-based encoder, whereas for NLI is a decomposable attention classifier from (Parikh et al., 2016), for

which only the HardKuma implementation was available. In order to faithfully compare the frameworks, we

adapted the HardKuma code and implemented a Bernoulli version of the same classifier, taking into consid-

eration the sparsity and fused-lasso loss penalties, and the deterministic strategy used during test time. For
1http://nlp.stanford.edu/data/glove.840B.300d.zip
2https://github.com/bastings/interpretable_predictions

http://nlp.stanford.edu/data/glove.840B.300d.zip
https://github.com/bastings/interpretable_predictions


simplicity, we used the independent variant of the generator of Lei et al. (2016). Table A.2 lists only the hyper-

parameters that we set during training. We refer to the original work of Bastings et al. (2019) to see all other

hyperparamers, for which we kept the default values.

HYPERPARAM. SST IMDB AGNEWS YELP SNLI

Latent selection (HardKuma) 0.3 0.1 0.3 0.3 0.1
Sparsity penalty (Bernoulli) 0.01 0.001 0.01 0.01 0.0003
Lasso penalty 0 0 0 0 0
Batch size 25 25 25 256 64
Number of epochs 25 25 25 10 100
Early stopping patience 5 5 5 5 100
Learning rate 0.0002 0.0002 0.0002 0.001 0.0002
ℓ2 regularization 10−5 10−5 10−5 10−5 10−6

Table A.2: Rationalizer models training hyperparameters for text classification and NLI datasets.

A.1.3 Validation set results and model statistics

Table A.3 shows the accuracy of each classifier on the validation set, their number of trainable parameters

and the average training time per epoch.

SST IMDB AGNEWS

CLF. # P t ACC # P t ACC # P t ACC

C 474K 10s 85.32 474K 2m 95.64 474K 2m 98.09
Cent 474K 10s 84.29 474K 2m 95.84 474K 2m 98.54
Csp 474K 10s 84.17 474K 2m 95.44 474K 2m 98.51
Cbern 1.1M 15s 80.16 1.1M 2m 87.40 1.1M 2m 96.26
Chk 1.1M 15s 84.40 1.1M 2m 91.84 1.1M 2m 96.74

Table A.3: Classifier results on the validation set and model statistics. # P is the number of trainable parameters, and is t
the average training time per epoch.

YELP SNLI

CLF. # P t ACC # P t ACC

C 474K 3h 77.03 998K 4m 78.74
Cent 474K 3h 76.72 998K 4m 79.38
Csp 474K 3h 76.84 998K 4m 79.69
Cbern 1.1M 5h 69.99 382K 2m 79.79
Chk 1.1M 5h 74.29 462K 2m 86.04

Table A.4: Continuation of Table A.3.

A.2 Communication experimental setup (Table 3.4)

Training the communication under our framework consists on training a layperson L on top of explanations

(message) produced by E about C’s decision. With the exception of the explainer E trained jointly with L,

none of the other explainers have trainable parameters. Therefore, in these cases, the communication between

E and L consists only on training L. For all models, we calculated its CSR on the dev set after each epoch. At



the end of training we selected the model with the best validation CSR. Table A.5 shows the communication

hyperparameters. Note that for SNLI we still need to train a BiLSTM to encode the hypothesis.

HYPERPARAM. SST IMDB AGNEWS YELP SNLI

Word embeddings size - - - - 300
BiLSTM hidden size - - - - 128
Merge BiLSTM states - - - - concat
Batch size 16 16 16 112 64
Number of epochs 10 10 10 5 10
Early stopping patience 3 3 3 3 3
Learning rate 0.001 0.001 0.001 0.003 0.001
ℓ2 regularization 10−5 10−5 10−5 10−5 10−5

Table A.5: Communication hyperparameters for text classification and NLI datasets.

A.2.1 Validation set results and model statistics

Table A.6 shows the CSR and ACCL for each explainer on the validation set, the number of trainable

parameters of L and the average training time per epoch.

SST IMDB AGNEWS

EXPLAINER # P t CSR ACCL # P t CSR ACCL # P t CSR ACCL

Random 38K 10s 63.76 62.84 247K 1m 61.36 61.24 120K 2m 85.26 84.58
Erasure 38K 10s 81.88 79.82 247K 2m 94.00 91.40 120K 3m 98.41 96.98
Top-k gradient 38K 10s 76.72 75.57 247K 1m 91.88 89.52 120K 2m 98.23 96.97
Top-k softmax 38K 20s 84.29 80.62 247K 1m 96.60 93.60 120K 2m 98.54 97.14
Top-k 1.5-entmax 38K 20s 85.44 80.28 247K 1m 97.88 94.92 120K 2m 98.22 97.37
Top-k sparsemax 38K 20s 85.44 81.54 247K 1m 96.76 93.32 120K 2m 96.46 95.72
Select. 1.5-entmax 38K 10s 85.55 80.62 247K 1m 97.44 94.56 120K 1m 98.30 97.41
Select. sparsemax 38K 10s 85.44 81.54 247K 1m 97.04 93.36 120K 1m 96.46 95.72
Bernoulli 38K 5s 84.75 78.21 247K 1m 91.80 87.36 120K 1m 97.12 94.82
HardKuma 38K 5s 87.50 81.76 247K 1m 95.36 91.20 120K 1m 97.38 96.05

Table A.6: Communication results on the validation set and explainer statistics. # P is the number of trainable parameters,
and is t the average training time per epoch.

YELP SNLI

EXPLAINER # P t CSR ACCL # P t CSR ACCL

Random 1.8M 3h 52.55 48.21 560K 9m 31.04 33.11
Erasure 1.8M 4h 79.63 69.59 560K 10m 78.72 70.60
Top-k gradient 1.8M 3h 71.81 63.59 560K 10m 77.55 69.41
Top-k softmax 1.8M 3h 81.49 70.67 560K 9m 79.10 70.95
Top-k 1.5-entmax 1.8M 3h 82.80 71.31 560K 9m 80.30 73.57
Top-k sparsemax 1.8M 3h 82.97 71.46 560K 9m 83.25 75.34
Select. 1.5-entmax 1.8M 2h 82.90 70.99 560K 6m 77.46 71.66
Select. sparsemax 1.8M 2h 84.67 72.25 560K 6m 82.33 75.11
Bernoulli 1.8M 2h 84.93 66.77 560K 2m 75.75 68.61
HardKuma 1.8M 2h 87.43 71.57 560K 3m 75.10 71.10

Table A.7: Continuation of Table A.6.



A.3 Joint E and L setup

A.3.1 Communication

According to §3.4.2, in this model we have two set of parameters to train, one for the explainer E and other

for the layperson L, whereas the classifier is a frozen model that we want to explain. Here, we set C as the RNN

with softmax classifier (see §3.3). We design E with the same architecture of the RNNs with attention from

§A.1.1 but without a final output layer, and L have the same architecture as the laypersons in §3.5. In short, the

architecture of E is composed of: (i) embedding layer; (ii) BiLSTM; (iii) attention mechanism. As before, the

message is constructed with the words extracted from the attention mechanism.

We use sparsemax attention during training to ensure end-to-end differentiability, and we recover the top-k

attended words during test time. We used k = 5 for IMDB and k = 4 for SNLI in all experiments. In order to

encourage faithful explanations, we set h = 1
L

∑
i CRNN(xi) and h̃ = 1

L

∑
i FFN(ERNN(xi)), where FFN is

a simple feed-forward layer, and CRNN(xi) and ERNN(xi) are the BiLSTM states from the classifier and the

explainer, respectively. In other words, we are approximating the average of the BiLSTM states of C and E.

We set λ = 1 and β = 0.2 and used the same hyperparameters as in Table A.5. The list of stopwords used in

our experiments contains 127 English words extracted from NLTK.

A.3.2 Analysis of β

A potential problem of this model is for the two agents to agree on a trivial protocol, ensuring a high CSR

even with bad quality explanations (e.g. punctuations or stopwords). Besides preventing stopwords to be in

the message,3 we set a different probability β of the explainer accessing the predictions of the classifier ŷ.

Intuitively, these strategies should encourage explanations to have higher quality. One way to quantitatively

access the quality of the explanations is by aggregating the relative frequencies of each selected word in the

validation set, and calculating its Shannon’s entropy. If the entropy is low, then the explanations have a high

number of repetitions and the explainers are focusing on a very small subset of words, denoting a trivial protocol.

To check for a reasonable entropy score that resembles a good quality explanation, we investigate the entropy

of the other explainers, for which we had confirmed their quality via human evaluation.

In order to see the impact of β, we carried an experiment with increasing values of β and looked at the CSR,

ACCL and the entropy (H) of the generated explanations. Results are shown in Table A.8 for each explainer on

IMDB and SNLI.

When β = 0 no information about the label predicted by the classifier is being exposed to the explainer,

and as a result we have a model that resembles a combination of selective (during training) and top-k (during

test time) sparsemax explainers. This means that the results between these explainers are expected to be very

similar in terms of CSR.4 Overall, for both datasets, we can see a tradeoff between CSR and entropy H as

β increases, suggesting that CSR is not able to capture the notion of quality (which was expected due to the

subjective nature of an explanation). For IMDB the entropy values were lower than our previous explainers,

but for SNLI they were very similar. A potential reason for this is the particularity of the two datasets: IMDB

have long documents (280 words on average) with a large set of repetitive words which are not stopwords and

3In practice, we simply set attention scores associated with stopwords to −∞.
4Note that this also depends on the performance of C and Csp, which are indeed very similar in this case: 95.64 and 95.44.



IMDB SNLI

CLF. EXPLAINER H CSR ACCL H CSR ACCL

C Random 9.13 59.20 58.92 8.21 31.04 33.11
C Erasure 9.40 96.32 93.48 9.75 78.72 70.60
C Top-k gradient 9.49 85.84 83.72 9.39 77.55 69.41
C Top-k softmax 9.38 94.44 91.84 9.76 78.66 71.00
Cent Top-k 1.5-entmax 9.62 95.20 93.36 9.54 80.30 73.57
Csp Top-k sparsemax 9.56 95.28 92.56 8.79 83.25 75.34
Cent Select. 1.5-entmax 10.76 97.44 94.56 8.49 77.46 71.66
Csp Selec. sparsemax 10.41 97.04 93.36 8.38 82.33 75.11
Cbern Bernoulli 10.66 91.88 87.36 8.27 75.75 68.61
Chk HardKuma 11.38 95.36 91.20 9.93 75.10 71.10
- Human highlights - - - 8.72 87.97 87.97

C Joint E and L (β = 0.0) 6.16 93.04 90.84 9.81 80.74 72.38
C Joint E and L (β = 0.2) 6.05 98.52 94.56 9.81 93.44 77.20
C Joint E and L (β = 0.5) 5.63 99.68 95.64 9.45 95.81 77.54
C Joint E and L (β = 1.0) 3.72 99.92 95.56 9.01 97.49 77.23

Table A.8: Entropy of the explanations for all explainers on the validation set of IMDB and SNLI. Entropy for human
highlights was calculated based on non-neutral examples.

are strongly correlated with the labels (e.g. good, ok, bad, etc.); SNLI premises are very short (14 words on

average) without a large set of repetitive words. Finally, due to this tradeoff, we selected β = 0.2 for all of our

experiments since it induces a very high CSR with a reasonably good entropy.

A.4 Machine Translation experiments

A.4.1 Data

To compare explainers on a more challenging task with large |Y|, we ran an experiment on neural machine

translation (NMT), adapting the JoeyNMT framework (Kreutzer et al., 2019). We used the EN→DE IWSLT

2017 dataset (Cettolo et al., 2017), with the standard splits (Table 3.2).

A.4.2 Classifier

We replicated the work of Peters et al. (2019) with the exception that we used raw words as input instead of

byte-pair encodings. The implementation is based on Joey-NMT (Kreutzer et al., 2019). We employed beam

search decoding with beam size of 5, achieving a BLEU score of 20.49, 21.12 and 20.75 for softmax (C), 1.5-

entmax (Cent) and sparsemax (Csp), respectively. We refer to the work of Peters et al. (2019) for more training

details. Table A.9 shows the classifier hyperparameters.

A.4.3 Communication

The layperson is a model that uses an unidirectional LSTM with 256 hidden units to encode the translation

prefix, and a feed-forward layer to encode the concatenation of k source word embeddings (the message) to a

vector of 256 dimensions. The two vectors are concatenated and passed to a linear output layer to predict the

next word ỹ ∈ Y from the target vocabulary. We used 300D-pretrained GloVe embeddings to encode source



HYPERPARAM. VALUE

Word embeddings size 512
BiRNN hidden size 512
Attention scorer (Bahdanau et al., 2015)
Batch size 32
Optimizer Adam
Number of epochs 100
Early stopping patience 8
Learning rate 0.001
Decrease factor 0.5
ℓ2 regularization 0
RNN type LSTM
RNN layers 2
Dropout 0.3
Hidden dropout 0.3
Maximum output length 100
Beam size 5

Table A.9: Classifier hyperparmeters for neural machine translation.

words (EN), and 300D-pretrained FastText embeddings to encode target words (DE).5 Table A.10 shows the

communication hyperparameters.

HYPERPARAM. VALUE

Word embeddings size 300
LSTM hidden size 256
Merge LSTM states concat
Batch size 16
Number of epochs 10
Early stopping patience 5
Learning rate 0.003
ℓ2 regularization 10−5

Table A.10: Communication hyperparmeters for neural machine translation.

A.5 Human annotation

We had four different human annotators, two for IMDB and two for SNLI. No information was given about

the explainers which produced each message, and documents were presented in random order. Since in our

experiments we define the message as being a bag-of-words, which does not encode order information, the

explanations (i.e. the selected words) were shuffled and displayed as a cloud of words. The annotators were

asked to predict the label of each document, when seeing only these explanations. For SNLI, we show the entire

hypothesis as raw text and the premise as a cloud of words. We selected top-k explainers with k = 5 for IMDB

and k = 4 for SNLI. Figure A.1 shows a snapshot of the annotation interface used for the experiments described

in §3.6.

By directly looking at the explanations, we observed that some of them are very ambiguous with respect

to the true label, so we decided to include a checkbox to be marked in case the annotator was not sure by

his/her decision. The unsure checkbox also helps to capture the notion of sufficiency, that is, if the explanations

are sufficient for a human predict some label. A similar approach was employed by Yu et al. (2019) using a
5https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.de.300.bin.gz

https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.de.300.bin.gz


(a) IMDB (b) SNLI

Figure A.1: Snapshot of the annotation interface.

two-stage annotation method, explicitly asking the human annotator if the rationale was sufficient for his/her

decision. Furthermore, we calculated the agreement between explainers using the Cohen’s kappa coefficient

and the relative observed agreement ratio (or accuracy, po). Table A.11 shows statistics for the unsure checkbox

and agreement between annotators.

CLF. EXPLAINER
IMDB SNLI

u po κ CSRH ACCH u po κ CSRH ACCH

C Erasure 0.05 0.92 0.83 89.25 86.25 0.25 0.83 0.66 72.50 83.50
C Top-k gradient 0.17 0.76 0.51 73.50 73.00 0.32 0.80 0.59 65.75 76.75
C Top-k softmax 0.23 0.91 0.81 89.25 88.25 0.25 0.78 0.55 72.00 82.75
Cent Top-k 1.5-entmax 0.09 0.91 0.81 89.25 85.75 0.29 0.82 0.64 70.00 80.50
Csp Top-k sparsemax 0.09 0.88 0.76 89.00 87.50 0.38 0.80 0.59 68.25 80.25

Cent Selec. 1.5-entmax 0.13 0.80 0.60 86.50 84.00 0.21 0.84 0.67 75.25 87.00
Csp Selec. sparsemax 0.10 0.89 0.77 87.75 86.75 0.35 0.83 0.66 72.25 85.00
Cbern Bernoulli 0.25 0.72 0.43 79.00 75.00 0.24 0.85 0.69 74.50 86.75
Chk HardKuma 0.17 0.81 0.61 83.75 80.75 0.18 0.86 0.72 79.25 87.50

C Joint E and L 0.12 0.96 0.91 96.75 89.25 0.65 0.71 0.44 58.00 70.00
- Human highlights - - - - - 0.34 0.88 0.74 83.25 83.25

Average 0.14 0.85 0.70 - - 0.31 0.82 0.63 - -

Table A.11: Results for human evaluation. κ is the Cohen’s kappa coefficient, po is the relative observed agreement, and u
represents the average of the portion of examples where annotators were unsure about their decisions.

A.6 Examples of explanations

Tables A.12 and A.13 show the average word overlap between explainers’ messages (m) for IMDB and

SNLI. Looking at the statistics we observed that, in general, top-k attention-based classifiers produce similar

explanations among themselves, and the erasure explainer produces messages similar to top-k softmax. Major

differences are observed for top-k gradient and rationalizers, while selective attention produces, by definition,

more words than top-k attention (i.e. mtop-k ⊆ mselective). It is worth noticing that although explainers with

similar messages are expected to have a similar CSR (e.g. top-k attention and erasure), including/excluding a



single word in the explanation might impact the layperson decision, as we can see in the next examples. Tables

A.14 and A.15 show the output of erasure, gradient, attention, and joint explainers for IMDB, along with the

prediction made by the classifier (yC) and the layperson (yL). In Tables A.16 and A.17 we also include the

human highlights explainer for SNLI.

Erasure Top-k
gradient

Top-k
softmax

Top-k
1.5-entmax

Top-k
sparsemax

Selec.
1.5-entmax

Selec.
sparsemax Bernoulli HardKuma Joint E

and L

Erasure 1.00 0.34 0.85 0.56 0.55 0.20 0.37 0.14 0.23 0.20
Top-k gradient 0.34 1.00 0.35 0.30 0.30 0.16 0.26 0.11 0.18 0.11
Top-k softmax 0.85 0.35 1.00 0.57 0.55 0.20 0.37 0.14 0.24 0.20
Top-k 1.5-entmax 0.56 0.30 0.57 1.00 0.61 0.21 0.39 0.12 0.24 0.19
Top-k sparsemax 0.55 0.30 0.55 0.61 1.00 0.20 0.43 0.13 0.24 0.20
Selec. 1.5-entmax 0.20 0.16 0.20 0.21 0.20 1.00 0.45 0.24 0.44 0.08
Selec. sparsemax 0.37 0.26 0.37 0.39 0.43 0.45 1.00 0.21 0.41 0.13
Bernoulli 0.14 0.11 0.14 0.12 0.13 0.24 0.21 1.00 0.28 0.06
HardKuma 0.23 0.18 0.24 0.24 0.24 0.44 0.41 0.28 1.00 0.08
Joint E and L 0.20 0.11 0.20 0.19 0.20 0.08 0.13 0.06 0.08 1.00

Table A.12: Average word overlap (%) between explainers for IMDB.

Erasure Top-k
gradient

Top-k
softmax

Top-k
1.5-entmax

Top-k
sparsemax

Selec.
1.5-entmax

Selec.
sparsemax Bernoulli HardKuma Joint E

and L

Erasure 1.00 0.38 0.77 0.55 0.41 0.35 0.37 0.32 0.49 0.38
Top-k gradient 0.38 1.00 0.40 0.36 0.31 0.34 0.33 0.32 0.35 0.26
Top-k softmax 0.77 0.40 1.00 0.56 0.41 0.36 0.37 0.32 0.49 0.38
Top-k 1.5-entmax 0.55 0.36 0.56 1.00 0.46 0.36 0.42 0.32 0.46 0.34
Top-k sparsemax 0.41 0.31 0.41 0.46 1.00 0.35 0.54 0.32 0.38 0.29
Selec. 1.5-entmax 0.36 0.34 0.36 0.36 0.35 1.00 0.64 0.88 0.48 0.26
Selec. sparsemax 0.37 0.33 0.37 0.42 0.54 0.64 1.00 0.60 0.45 0.26
Bernoulli 0.32 0.32 0.32 0.32 0.32 0.88 0.60 1.00 0.46 0.24
HardKuma 0.49 0.35 0.49 0.46 0.38 0.48 0.45 0.46 1.00 0.38
Joint E and L 0.38 0.26 0.38 0.34 0.29 0.26 0.26 0.24 0.38 1.00

Table A.13: Average word overlap (%) between explainers for SNLI.



(positive) Mardi Gras : Made in china is an excellent movie that depicts how two cultures have much in common but , are not even aware of the influence each
society has on one another . David Redmon open your eyes and allows you to see how the workers in china manufactures beads that cost little to nothing and are
sold in America for up to 20 dollars . When Redmon questions Americans about where these beads come from they had no clue and seemed dumb founded . When
he told them that they are made in China for less then nothing with horrible pay and unacceptable working conditions , Americans seemed sad , hurt , and a little
remorseful but didn ’ t really seem that they would stop purchasing the beads after finding out the truth . When Redmon questioned the workers in china they did
not know that Americans were wearing them over their necks and paid so much for these beads . The workers laughed at what the purpose was behind beads and
couldn ’ t believe it . This movie is a great film that gives us something to think about in other countries besides our own . < br >< br > M . Pitts

EXPLAINER yC yL EXPLANATION

Erasure pos pos excellent great film besides hurt
Top-k gradient pos neg hurt horrible a excellent couldn
Top-k softmax pos pos excellent great film movie besides
Top-k 1.5-entmax pos pos great excellent couldn that besides
Top-k sparsemax pos pos excellent great couldn gives besides
Select. entmax15 pos pos great excellent couldn that besides hurt didn that horrible is china Pitts gives us Redmon stop is not for t
Select. sparsemax pos pos excellent great couldn gives besides china hurt that is
Bernoulli pos neg an excellent movie another dumb horrible unacceptable sad remorseful movie great br br Pitts
HardKuma pos pos excellent movie depicts America dumb horrible a great gives us besides our Pitts
Joint E and L pos pos great excellent

(negative) I don ’ t remember " Barnaby Jones " being no more than a very bland , standard detective show in which , as per any Quinn Martin show , Act I was the
murder , Act II was the lead character figuring out the murder , Act III was the plot twist ( another character murdered ), Act IV was the resolution and the Epilogue
was Betty ( Lee Meriwether ) asking her father - in - law Barnaby Jones ( Buddy Ebsen ) how he figured out the crime and then someone saying something witty
at the end of the show . < br > < br > One thing I do remember was the late , great composer Jerry Goldsmith ’ s excellent theme song . Strangely , the opening
credit sequence made me want to see the show off and on for the seven seasons the show was on the air . I will also admit that it was nice to see Ebsen in a role
other than Jed Clampett despite Ebsen being badly miscast . I just wished the show was more entertaining than when I first remembered it . < br >< br > Update
( 1 / 11 / 2009 ): I watched an interview with composer Jerry Goldsmith on YouTube through their Archive of American Television channel . Let ’ s just say that I
was more kind than Goldsmith about the show " Barnaby Jones ."

EXPLAINER yC yL EXPLANATION

Erasure neg pos wished excellent remembered miscast Strangely
Top-k gradient neg neg miscast excellent remembered it badly
Top-k softmax neg pos wished excellent remembered miscast figuring
Top-k 1.5-entmax neg neg wished remembered Strangely miscast excellent
Top-k sparsemax neg neg Strangely miscast wished badly excellent
Select. entmax15 neg neg wished remembered Strangely miscast excellent admit bland no character figuring say badly figured credit , the

< the witty want just thing <
Select. sparsemax neg neg Strangely miscast wished badly excellent remembered bland
Bernoulli neg neg very bland , lead character plot character Epilogue witty show br late composer excellent theme song Strangely

seasons nice badly miscast entertaining remembered br ( 1 / composer American Television
HardKuma neg neg bland figuring saying excellent Strangely credit admit miscast wished remembered ( 1 11
Joint E and L neg neg bland badly something

(positive) Yes ... I ’ m going with the 1 - 0 on this and here ’ s why . In the last few years , I have watched quite a few comedies and only left with a few mild laughs
and a couple video rental late fees because the movies were that easy to forget . Then I stumble upon " Nothing ". Looked interesting , wasn ’ t expecting much
though . I was wrong . This was probably one of the funniest movies I have ever had the chance to watch . Dave and Andrew make a great comedic pair and the
humor was catchy enough to remember , but not over complex to the point of missing the joke . I don ’ t want to remark on any of the actual scenes , because I do
feel this is a movie worth seeing for once . With more and more pointless concepts coming into movies ( you know , like killer military jets and " fresh " remakes
that are ruining old classics ), This movie will make you happy to say it ’ s OK to laugh at " Nothing ".

EXPLAINER yC yL EXPLANATION

Erasure pos pos funniest worth great wrong pointless
Top-k gradient pos pos comedic funniest OK worth joke
Top-k softmax pos pos funniest worth great wrong pointless
Top-k 1.5-entmax pos pos funniest great wrong worth not
Top-k sparsemax pos pos funniest worth great catchy wrong
Select. entmax15 pos neg funniest great wrong worth not catchy do probably pointless easy feel ruining movie OK joke ever Yes seeing

stumble comedic mild don wasn enough ), forget because 0 for
Select. sparsemax pos neg funniest worth great catchy wrong ruining 0 feel easy OK not pointless
Bernoulli neg neg - few comedies few mild laughs couple movies stumble interesting wrong probably funniest movies Dave great

comedic humor catchy joke scenes movie pointless movies fresh remakes ruining movie Nothing ".
HardKuma neg neg 0 stumble wrong probably one funniest great catchy not joke a movie worth seeing pointless ruining OK Nothing
Joint E and L pos neg funniest pointless worth

(negative) I ’ m not to keen on The Pallbearer , it ’ s not too bad , but just very slow at the times . As the movie goes on , it gets a little more interesting , but nothing
brilliant . I really like David Schwimmer and I think he ’ s good here . I ’ m not a massive Gwyneth Paltrow fan , but I don ’ t mind her sometimes and she ’ s okay
here . The Pallbearer is not a highly recommended movie , but if you like the leads then you might enjoy it .

EXPLAINER yC yL EXPLANATION

Erasure neg pos brilliant slow recommended nothing good
Top-k gradient neg pos not nothing recommended slow brilliant
Top-k softmax neg pos brilliant slow nothing recommended good
Top-k 1.5-entmax neg neg slow brilliant nothing not recommended
Top-k sparsemax pos pos slow brilliant nothing recommended good
Select. entmax15 neg pos slow brilliant nothing not recommended good enjoy highly very if you goes don okay , little it bad gets really
Select. sparsemax pos pos slow brilliant nothing recommended good enjoy very bad highly
Bernoulli neg neg Pallbearer , too bad slow times movie , brilliant good massive okay Pallbearer highly movie enjoy
HardKuma neg pos slow nothing brilliant good okay highly recommended might enjoy
Joint E and L neg neg nothing bad slow okay highly

Table A.14: Examples of extracted explanations for IMDB.



(positive) Ok , when I rented this several years ago I had the worst expectations . Yes , the acting isn ’ t great , and the picture itself looks dated , but as I sat there ,
a strange thing happened . I started to like it . The action is great and there are few scenes that make you jump . Brion James , maybe one of the greatest B - grade
actors next to Bruce Campbell , is great as always . The story isn ’ t bad either . Now I wouldn ’ t rush out and buy it , but you won ’ t waste your time at least
watching this good b - grade post apocalyptic western .

EXPLAINER yC yL EXPLANATION

Erasure pos pos good great great grade waste
Top-k gradient pos neg waste worst greatest grade t
Top-k softmax pos neg good great great worst grade
Top-k 1.5-entmax pos pos great waste great good greatest
Top-k sparsemax pos neg great waste great good grade
Select. entmax15 pos pos great waste great good greatest great always Ok apocalyptic Yes make buy t grade isn worst but wouldn strange is
Select. sparsemax pos neg great waste great good grade greatest your worst Yes Ok
Bernoulli neg neg worst , acting , looks strange great scenes greatest actors great story bad , waste watching good apocalyptic western
HardKuma pos neg worst great great always waste good apocalyptic
Joint E and L pos neg great worst

(negative) I have read each and every one of Baroness Orczy ’ s Scarlet Pimpernel books . Counting this one , I have seen 3 pimpernel movies . The one with Jane
Seymour and Anthony Andrews i preferred greatly to this . It goes out of its way for violence and action , occasionally completely violating the spirit of the book .
I don ’ t expect movies to stick directly to plots , i gave up being that idealistic long ago , but if an excellent movie of a book has already been made , don ’ t remake
it with a tv movie that includes excellent actors and nice costumes , but a barely decent script . Sticking with the 80 ’ s version .... Rahne

EXPLAINER yC yL EXPLANATION

Erasure neg pos excellent excellent script barely decent
Top-k gradient neg neg barely decent script if but
Top-k softmax neg pos excellent excellent script decent barely
Top-k 1.5-entmax neg pos barely excellent excellent have Sticking
Top-k sparsemax neg pos excellent excellent barely pimpernel decent
Select. entmax15 neg pos barely excellent excellent have Sticking preferred decent . It don to t script way if costumes Counting pimpernel Rahne ,

nice greatly t have
Select. sparsemax neg pos excellent excellent barely pimpernel decent preferred nice t Sticking It
Bernoulli pos pos Baroness Orczy pimpernel movies greatly occasionally movies plots excellent movie tv excellent actors nice costumes

barely decent script ....
HardKuma neg pos have pimpernel preferred way excellent excellent barely decent Sticking Rahne
Joint E and L neg neg barely expect decent preferred completely

(negative) While I agree that this was the most horrendous movie ever made , I am proud to say I own a copy simply because myself and a bunch of my friends
were extras ( mostly in the dance club scenes , but a few others as well . This movie had potential with Bolo and the director of Enter the Dragon signed on , but as
someone who was on set most every day I can tell you that Robert Clouse was an old and confused individual , at least during the making of this movie . It was a
wonder he could find his way to the set everyday . I would also like to think that this might have been a better movie if a lot of it had not been destroyed in a fire at
Morning Calm studios . I can ’ t say that it would have been for sure , but it would be nice to think so . I was actually surprised that it was ever released , and that
someone like Bolo would attach his name to it without a fight . Oh well . Also look at the extras for pro wrestler Scott Levy , AKA Raven . He was a wrestler in
Portland at the time ... nice guy , very smart .

EXPLAINER yC yL EXPLANATION

Erasure neg pos horrendous well well nice nice
Top-k gradient neg pos well horrendous this well very
Top-k softmax neg pos horrendous well Oh well nice
Top-k 1.5-entmax neg neg horrendous Oh surprised had agree
Top-k sparsemax neg pos horrendous smart nice Oh had
Select. entmax15 neg pos horrendous Oh surprised had agree nice smart others ever well ever but most nice movie proud like wonder . way few

without . find but It making well actually be everyday
Select. sparsemax neg pos horrendous smart nice Oh had ever ever few . wonder nice
Bernoulli neg pos most horrendous bunch extras mostly scenes few This movie old movie everyday lot nice extras wrestler wrestler nice guy
HardKuma neg neg horrendous bunch few confused wonder Oh guy very smart
Joint E and L neg neg horrendous without

(positive) Having read some of the other comments here I was expecting something truly awful but was pleasantly surprised . REALITY CHECK : The original
series wasn ’ t that good . I think some people remember it with more affection than it deserved but apart from the car chases and Daisy Duke ’ s legs the scripts
were weak and poorly acted . The Duke boys were too intelligent and posh for backwood hicks , the shrunken Boss Hog was too cretinous to be evil and Rosco was
just hyper throughout every screen moment . It ’ s amazing the series actually lasted as long as it did because it ran out of story lines during the first series . < br >
< br > Back to the movie . If you watch this film in it ’ s own right , not as a direct comparison to however you remember the TV series , then it ’ s not bad at all
. The real star is of course the General Lee . The car chases and stunts are excellent and that ’ s really what D . O . H . is all about . Johnny Knoxville is his usual
eccentric self and along with Seann William Scott as Cousin Bo the pair make this film really funny in a hilarious Dumb - And - Dumber sort of way the TV series
never achieved . The lovely Jessica Simpson is a natch as Miss Daisy , Burt Reynolds makes a much improved Boss Hog and M . C . Gainey makes a believably
nasty Rosco P . Coltrane , the way he always should have been . < br > < br > If you don ’ t like slapstick humour and crazy car stunts then you wouldn ’ t be
watching this film anyway because you should know what to expect . Otherwise if you want an entertaining car - action movie with a few good laughs that ’ s not
too taxing on the brain then go see this enjoyable romp with an open mind .

EXPLAINER yC yL EXPLANATION

Erasure pos pos horrendous well well nice nice
Top-k gradient pos neg well horrendous this well very
Top-k softmax pos pos horrendous well Oh well nice
Top-k 1.5-entmax pos pos horrendous Oh surprised had agree
Top-k sparsemax pos neg horrendous smart nice Oh had
Select. entmax15 pos pos horrendous Oh surprised had agree nice smart others ever well ever but most nice movie proud like wonder . way few

without . find but It making well actually be everyday
Select. sparsemax pos pos horrendous smart nice Oh had ever ever few . wonder nice
Bernoulli pos pos most horrendous bunch extras mostly scenes few This movie old movie everyday lot nice extras wrestler wrestler nice guy
HardKuma neg neg horrendous bunch few confused wonder Oh guy very smart
Joint E and L pos pos horrendous without

Table A.15: (continuation) Examples of extracted explanations for IMDB.



(entailment)
Premise: Children and adults swim in large pool with red staircase .
Hypothesis: A group of people are swimming .

EXPLAINER yC yL EXPLANATION

Erasure ent ent swim pool staircase adults
Top-k gradient ent con adults pool swim large
Top-k softmax ent ent swim pool large staircase
Top-k 1.5-entmax ent ent swim pool large staircase
Top-k sparsemax ent ent swim pool large adults
Select. entmax15 ent ent swim pool large staircase adults Children in and with
Select. sparsemax ent ent swim pool large adults in
Bernoulli ent ent Children and adults swim in large pool with red staircase .
HardKuma ent con swim large pool staircase
Joint E and L ent con pool swim staircase

(contradiction)
Premise: A group of Asian children are gathered around in a circle listening to an older male in a white shirt .
Hypothesis: A man is wearing a black shirt .

EXPLAINER yC yL EXPLANATION

Erasure con ent Asian white male children
Top-k gradient con ent circle children gathered to
Top-k softmax con ent Asian white male children
Top-k 1.5-entmax con con white older a male
Top-k sparsemax con con a male shirt Asian
Select. entmax15 con con white older a male Asian listening circle shirt of children around gathered a an group in in . A to are
Select. sparsemax con con a male shirt Asian . an
Bernoulli ent ent A group of Asian children are gathered around in a circle listening to an older male in a white shirt .
HardKuma con ent group Asian male white shirt
Joint E and L con con male group white

(contradiction)
Premise: A woman is pushing her bike with a baby carriage in front .
Hypothesis: A woman is pushing groceries in a cart .

EXPLAINER yC yL EXPLANATION

Erasure con con baby woman bike pushing
Top-k gradient con con carriage bike her with
Top-k softmax con neu baby woman carriage pushing
Top-k 1.5-entmax con con carriage woman her baby
Top-k sparsemax ent con baby carriage woman front
Select. entmax15 con con carriage woman her baby pushing front is A . a bike with
Select. sparsemax ent ent baby carriage woman front pushing is
Bernoulli con con A woman is pushing her bike with a baby carriage in front .
HardKuma con con woman pushing bike carriage
Joint E and L con con woman baby

(neutral)
Premise: A woman in a gray shirt working on papers at her desk .
Hypothesis: Lady working in her desk tensely to completed the task

EXPLAINER yC yL EXPLANATION

Erasure neu neu desk papers woman .
Top-k gradient neu neu desk on shirt at
Top-k softmax neu neu desk papers woman .
Top-k 1.5-entmax neu neu desk papers working woman
Top-k sparsemax neu neu desk papers woman working
Select. entmax15 neu ent desk papers working woman . on shirt her at in a
Select. sparsemax neu ent desk papers woman working her A
Bernoulli neu neu A woman in a gray shirt working on papers at her desk .
HardKuma neu neu woman working papers at desk
Joint E and L neu neu working desk woman papers

(neutral)
Premise: A brown dog with a blue muzzle is running on green grass .
Hypothesis: A mean dog is wearing a muzzle to keep it from attacking cats

EXPLAINER yC yL EXPLANATION

Erasure neu neu dog brown running muzzle
Top-k gradient neu neu with brown on green
Top-k softmax neu neu dog brown running blue
Top-k 1.5-entmax con con dog blue brown muzzle
Top-k sparsemax neu neu dog muzzle with is
Select. entmax15 con neu dog blue brown muzzle running is . A grass green with on a
Select. sparsemax neu neu dog muzzle with is A a running on brown
Bernoulli neu con A brown dog with a blue muzzle is running on green grass .
HardKuma neu neu dog muzzle running
Joint E and L neu neu dog running muzzle

Table A.16: Examples of extracted explanations for SNLI.



(contradiction)
Premise: A man sits at a table in a room .
Hypothesis: A woman sits .

EXPLAINER yC yL EXPLANATION

Erasure con ent sits table . at
Top-k gradient con ent . sits table A
Top-k softmax con ent sits table . room
Top-k 1.5-entmax con ent table . sits man
Top-k sparsemax con ent man sits A at
Select. entmax15 con ent table . sits man A room a a at in
Select. sparsemax con ent man sits A at in a a
Bernoulli con ent A man sits at a table in a room .
HardKuma con con man sits at
Joint E and L con con man
Human Highlights con ent man

(entailment)
Premise: Elderly woman climbing up the stairs .
Hypothesis: The old lady was walking up the stairs .

EXPLAINER yC yL EXPLANATION

Erasure ent ent stairs woman Elderly climbing
Top-k gradient ent con Elderly stairs . the
Top-k softmax ent con stairs woman Elderly climbing
Top-k 1.5-entmax ent con stairs Elderly woman climbing
Top-k sparsemax ent con stairs Elderly woman climbing
Select. entmax15 ent con stairs Elderly woman climbing up . the
Select. sparsemax ent con stairs Elderly woman climbing the
Bernoulli con con Elderly woman climbing up the stairs .
HardKuma ent con Elderly woman climbing up stairs
Joint E and L ent ent stairs Elderly climbing woman
Human Highlights ent con Elderly woman climbing

(entailment)
Premise: A woman with a blond ponytail and a white hat is riding a white horse , inside a fence with a horned cow .
Hypothesis: The woman is riding a horse .

EXPLAINER yC yL EXPLANATION

Erasure ent con horse riding . fence
Top-k gradient ent ent cow horse fence riding
Top-k softmax ent ent horse riding fence cow
Top-k 1.5-entmax ent con horse riding woman a
Top-k sparsemax ent con horse riding a is
Select. entmax15 ent con horse riding woman a cow fence horned a is ponytail , a with inside blond A . hat
Select. sparsemax ent con horse riding a is with A ,
Bernoulli ent con A woman with a blond ponytail and a white hat is riding a white horse , inside a fence with a horned

cow .
HardKuma ent con woman ponytail riding horse inside horned cow
Joint E and L ent ent cow horse fence inside
Human Highlights ent ent woman blond horse fence horned cow

(contradiction)
Premise: A woman in a black coat eats dinner while her dog looks on .
Hypothesis: A woman is wearing a blue coat .

EXPLAINER yC yL EXPLANATION

Erasure con ent coat black woman dog
Top-k gradient con ent dog eats black looks
Top-k softmax con ent coat black woman dinner
Top-k 1.5-entmax con con black coat woman dog
Top-k sparsemax con con black a woman A
Select. entmax15 con con black coat woman dog a looks in . dinner eats her A on while
Select. sparsemax con ent black a woman A coat in her
Bernoulli con ent A woman in a black coat eats dinner while her dog looks on .
HardKuma con ent woman black coat
Joint E and L con con woman black
Human Highlights con con black

Table A.17: (continuation) Examples of extracted explanations for SNLI.
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B.1 Datasets

The revised IMDB and SNLI datasets, which we refer to as rIMDB and rSNLI respectively, were created

by Kaushik et al. (2020). They contain counterfactuals consisting of revised versions made by humans on the

Amazon’s Mechanical Turk crowdsourcing platform. For both datasets, the authors ensure that (a) the counter-

factuals are valid; (b) the edited reviews are coherent; and (c) the counterfactuals do not contain unnecessary

modifications. For SNLI, counterfactuals were created either by revising the premise or the hypothesis. We

refer to (Kaushik et al., 2020) for more details on the data generation process. Table B.1 presents statistics for

the datasets used for training models in this work.

Train Val. Test

Dataset docs tokens docs tokens docs tokens

IMDB 22.5K 6M 2.5K 679K 25K 6M
Revised IMDB 3414 629K 490 92K 976 180K

SNLI 549K 12M 10K 232K 10K 231K
Revised SNLI 4165 188K 500 24K 1000 48K

Table B.1: Datasets statistics.

Additionally, we incorporate various contrastive and out-of-domain datasets to evaluate our models. For

IMDB, we use the contrast IMDB (Gardner et al., 2020), RottenTomatoes (Pang and Lee, 2005), SST-2 (Socher

et al., 2013), Amazon Polarity and Yelp (Zhang et al., 2015). For SNLI, we evaluate on the Hard SNLI (Guru-

rangan et al., 2018), break (Glockner et al., 2018), MultiNLI (Williams et al., 2018), and Adversarial NLI (Nie

et al., 2020). We refer to the original works for more details.

B.2 CREST Details

B.2.1 Masker

For all datasets, the masker consists of a SPECTRA rationalizer that uses a T5-small encoder as the back-

bone for the encoder and predictor (see §4.2.1). Our implementation is derived directly from its original

source (Guerreiro and Martins, 2021). We set the maximum sequence length to 512, truncating inputs when

necessary. We employ a contiguity penalty of 10−4 for IMDB and 10−2 for SNLI. We train all models for a

minimum of 3 epochs and maximum of 15 epochs along with early stopping with a patience of 5 epochs. We

use AdamW (Loshchilov and Hutter, 2019) with a learning rate of 10−4 and weight decay of 10−6.

B.2.2 Editor

For all datasets, CREST and MiCE editors consist of a full T5-small model (Raffel et al., 2020), which

includes both the encoder and the decoder modules. We use the T5 implementation available in the transformers

library (Wolf et al., 2020) for our editor. We train all models for a minimum of 3 epochs and maximum of 20

epochs along with early stopping with a patience of 5 epochs. We use AdamW (Loshchilov and Hutter, 2019)

with a learning rate of 10−4 and weight decay of 10−6. For both CREST and MiCE, we generate counterfactuals

with beam search with a beam of size 15 and disabling bigram repetitions. We post-process the output of the

editor to trim spaces and repetitions of special symbols (e.g., </s>).
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Figure B.1: Validity by binned closeness ranges for MiCE (30% masking) and CREST (30% masking). At lower closeness
ranges, CREST produces more valid counterfactuals than does MiCE.

B.2.3 SPECTRA rationalizers

All of our SPECTRA rationalizers share the same setup and training hyperparameters as the one used by

the masker in §4.4, but were trained with distinct random seeds. We tuned the counterfactual loss weight α

within {1.0, 0.1, 0.01, 0.001, 0.0001}, and λ within {1.0, 0.1, 0.01, 0.001} for models trained with agreement

rationalization. More specifically, we performed hyperparameter tuning on the validation set, with the goal of

maximizing in-domain accuracy. As a result, we obtained α = 0.01 and λ = 0.001 for IMDB, and α = 0.01

and λ = 0.1 for SNLI.

B.3 Validity vs. Closeness

To better assess the performance of CREST and MiCE by varying closeness, we plot in Figure B.1 binned-

validity scores of CREST and MiCE with 30% masking on the revised SNLI dataset. Although CREST is

deemed less valid than MiCE overall (cf. Table 4.1), we note that CREST generates more valid counterfactuals

in lower minimality ranges. This provides further evidence that CREST remains superior to MiCE on closeness

intervals of particular interest for generating counterfactuals in an automatic way.

B.4 Human Annotation

The annotation task was conducted by four distinct individuals, all of whom are English-fluent PhD students.

Two annotators were employed for IMDB and two for SNLI. The annotators were not given any information

regarding the methods used to create each counterfactual, and the documents were presented in a random order

to maintain source anonymity. The annotators were presented with the reference text and its corresponding gold

label. Subsequently, for each method, they were asked to assess both the validity and the naturalness of the

resulting counterfactuals using a 5-point Likert scale. We provided a guide page to calibrate the annotators’

understating of validity and naturalness prior the annotation process. We presented hypothetical examples with

different levels of validity and naturalness and provided the following instructions regarding both aspects:

• “If every phrase in the text unequivocally suggests a counterfactual label, the example is deemed fully

valid and should receive a top score of 5/5.”



IMDB SNLI

Method v n ro v n ro

Manual 4.60 4.36 0.83 4.89 4.90 0.95
MiCE 2.76 2.29 0.71 4.35 4.71 0.94
CREST 4.06 3.44 0.76 4.89 4.89 0.96

Overall 3.81 3.36 0.77 4.71 4.83 0.95

Table B.2: Annotation statistics. v and n represent the averaged validity and naturalness scores, whereas ro is the relative
observed agreement computed with a normalized and inverted MAD.

Figure B.2: Snapshot of the annotation interface.

• “If the counterfactual text aligns with the style, tone, and grammar of real-world examples, it’s considered

highly natural and deserves a score of 5/5.“

We measure inter-annotator agreement with a normalized and inverted Mean Absolute Difference (MAD),

which computes a “soft” accuracy by averaging absolute difference ratings and normalizing them to a 0-1

range. We present the annotation results in Table B.2. Our results show that humans agreed more on manual

examples than on automatic approaches. On the other hand, for SNLI, annotators assigned similar scores across

all methods. In terms of overall metrics, including validity, naturalness, and agreement, the scores were lower

for IMDB than for SNLI, highlighting the difficulty associated with the generation of counterfactuals for long

movie reviews.

Annotation interface. Figure B.2 shows a snapshot of the interface used for the annotation, which is publicly

available at https://www.github.com/mtreviso/TextRankerJS.

B.5 Counterfactual Data Augmentation Analysis

Previous studies on counterfactual data augmentation have found that model performance highly depends on

the number and diversity of augmented samples (Huang et al., 2020; Joshi and He, 2022). To account for this,

we investigate the effect of adding increasingly larger portions of CREST counterfactuals for data augmentation

on the IMDB dataset. Our findings are summarized in Table B.3.

https://www.github.com/mtreviso/TextRankerJS


Setup Data size RotTom SST-2 Amazon Yelp

F 100% 76.5 ± 1.6 79.8 ± 1.6 86.0 ± 0.7 88.5 ± 0.7

With data augmentation:
F + CH +8% 76.6 ± 1.5 80.7 ± 1.3 86.3 ± 1.0 89.1 ± 1.2

F + CS,V +1% 77.2 ± 1.1 80.5 ± 0.5 86.1 ± 0.2 88.8 ± 0.3

F + CS,V +2% 76.2 ± 1.2 80.8 ± 0.8 86.7 ± 0.5 89.6 ± 0.5

F + CS,V +4% 77.7 ± 0.8 80.8 ± 0.7 87.0 ± 0.6 89.8 ± 0.6

F + CS,V +8% 76.6 ± 2.2 80.2 ± 1.7 86.1 ± 0.9 88.2 ± 1.0

F + CS,V +85% 76.8 ± 0.9 79.3 ± 0.3 85.2 ± 0.9 88.0 ± 1.0

F + CS +100% 76.7 ± 1.0 80.6 ± 0.6 86.4 ± 0.6 89.1 ± 0.5

With agreement regularization:
F & CS,V 85% 76.3 ± 1.4 80.2 ± 1.3 86.3 ± 0.7 88.9 ± 0.7

F & CS 100% 77.3 ± 2.3 81.1 ± 2.4 86.8 ± 0.8 89.3 ± 0.7

Table B.3: OOD accuracy of SPECTRA rationalizers with different portions of augmented counterfactuals. Values in Bold:
top results; underlined: second-best.

Discussion. We find that incorporating human-crafted counterfactuals (F +CH ) improves SPECTRA perfor-

mance on all OOD datasets. On top of that, we note that using a small proportion (4% of the full IMDB) of

valid CREST counterfactuals (F +CS,V ) through data augmentation also leads to improvements on all datasets

and outweighs the benefits of manual counterfactuals. This finding confirms that, as found by PolyJuice (Wu

et al., 2021), synthetic counterfactuals can improve model robustness. Conversely, as the number of augmented

counterfactuals increases (85%), the performance on OOD datasets starts to decrease, which is also consistent

with the findings of Huang et al. (2020). When augmenting the entire training set we obtain an increase of accu-

racy, suggesting that the counterfactual loss weight (α) was properly adjusted on the validation set. Finally, we

observe that while applying CREST-Rationalization only on valid examples (F & CS,V ) degrades performance,

applying CREST-Rationalization on all paired examples (F & CS) maintains a high accuracy on OOD datasets

and concurrently leads to strong results on in-domain and contrast datasets (see Table 4.2).

B.6 Examples of Counterfactuals

Table B.4 shows examples of counterfactuals produced by MiCE and CREST, both with 30% masking.



Sentiment Classification:
Input: If you haven’t seen this, it’s terrible. It is pure trash. I saw this about 17 years ago, and I’m still screwed up from it.

MiCE: If you haven’t seen this, it’s a great movie. I saw this about 17 years ago, and I’m still screwed up from it.

CREST: If you haven’t seen this movie, it’s worth seeing. It’s very funny. I saw it about 17 years ago, and I’m still screwed up from it.

Input: Touching; Well directed autobiography of a talented young director/producer. A love story with Rabin’s assassination in the
background. Worth seeing !

MiCE: Watching abiography of a very young writer/producer. A great story of Rabin’s assassination in the background! Worth
seeing!!

CREST: This is the worst film of a talented young director/producer. And Rabin’s assassination in the background is even worse!

Input:
A solid, if unremarkable film. Matthau, as Einstein, was wonderful. My favorite part, and the only thing that would make me
go out of my way to see this again, was the wonderful scene with the physicists playing badmitton, I loved the sweaters and
the conversation while they waited for Robbins to retrieve the birdie.

MiCE: This is an unremarkable, if unremarkable .hau, as steinstein, is the worst part of the movie, and the only thing that would make
me go out of my way to see this again is the physicists /mitt ists and the wait wait till they waited for binbins to re-release.

CREST:
This is a very unremarkable and unwatchable film. The acting is unhau, the plot, and the acting. My favorite thing about this
film, and the only thing that made me go out of my mind, was the ending with the physic nerves of Symitton, I watched the
zombies and thought they waited for Robbins to retrieve the junkie.

Input:
I saw this film earlier today, and I was amazed at how accurate the dialog is for the main characters. It didn’t feel like a film
- it felt more like a documentary (the part I liked best). The leading ladies in this film seemed as real to me as any fifteen
year-old girls I know. All in all, a very enjoyable film for those who enjoy independent films.

MiCE: I saw this film earlier today, and I was amazed at how bad the film is for the sake of a film - it feels more like thanthe part I
played in this film. To me - fifteen year-old s I don’t know. All in all this is a bad film for those who like independent films :

CREST:
I saw this movie earlier today, and I was surprised at how bad it is for the first time. It’s not a good movie - it’s just a bad
movie (the only thing I can say about it). The acting is awful to me as any fifteen year-old as I can. All in all, the movie is a
waste of time for me.

Natural Language Inference:
Prem: A large group of people walking in a busy city at night.
Hyp: People are outside in a park.

MiCE: People are walking in a city at night

CREST: People walking in a city.
Prem: Players from two opposing teams wearing colorful cleats struggle to gain control over a ball on an AstroTurf field.
Hyp: The players are playing a sport.

MiCE: The players are playing chess at home

CREST: The players are sitting on a couch.
Prem: A woman is in the middle of hitting a tennis ball.
Hyp: A woman is playing tennis.

MiCE: A woman is playing basketball at home

CREST: A woman is playing basketball.
Prem: Two boys with blond-hair, wearing striped shirts on a bed.
Hyp: Children playing in the park.

MiCE: Children are on the bed.

CREST: Boys are on the bed.
Prem: Bubbles surround a statue in the middle of a street.
Hyp: There are bubbles around the statue.

MiCE: There are bubbles surround the statue.

CREST: Bubbles are in the ocean.
Prem: A young girl is standing in a kitchen holding a green bib.
Hyp: A boy is playing with a firetruck.

MiCE: A child is in a fire place

CREST: A girl is holding a bib.

Table B.4: Examples of original inputs from the IMDB and SNLI datasets followed by synthetic counterfactuals produced
by MiCE and CREST with 30% masking.
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C.1 Machine Translation

C.1.1 Setup

Data. Statistics for all datasets used in MT experiments can be found below in Table C.1.

DATASET # TRAIN # TEST AVG. SENTENCE LENGTH

IWSLT17 (EN→DE) 206K 1080 20 ±14 / 19 ±13
IWSLT17 (EN→FR) 233K 1210 20 ±14 / 21 ±15

Table C.1: Statistics for MT datasets.

Training and Model. We replicated the sentence-level model of Fernandes et al. (2021) with the exception

that we used α-entmax with α = 1.5 instead of softmax in all attention heads and layers. Table C.2 shows some

architecture (transformer large) and training hyperparameters used for MT experiments. We refer to the original

work of Fernandes et al. (2021) for more training details.

HYPERPARAM. VALUE

Hidden size 1024
Feedforward size 4096
Number of layers 6
Number of heads 16
Attention mapping π 1.5-entmax
Optimizer Adam
Number of epochs 20
Early stopping patience 10
Learning rate 0.0005
Scheduling Inverse square root
Linear warm-up steps 4000
Dropout 0.3
CoWord dropout 0.1
Beam size 5

Table C.2: Hyperparmeters for neural machine translation models.

C.1.2 Projections setup

Data. Statistics for the subsets of IWSLT used in the projection analysis can be found below in Table C.3.

TRAIN VALIDATION

PAIR # SENT. # POS. PAIRS AVG. SENT. LENGTH # SENT. # POS. PAIRS AVG. SENT. LENGTH

EN→DE 9K 8M ±1M 35 ±16 1K 330K ±56K 36 ±17
EN→FR 9K 9M ±1M 37 ±17 1K 334K ±58K 37 ±16

Table C.3: Statistics for subsets of IWSLT used for training and evaluating projections.

Training. After extracting the α-entmax graphs, we optimize the learnable parameters of Equation 5.7 with

Adam over a single epoch. Moreover, we used the k-means implementation from scikit-learn (Pedregosa et al.,



2011) for our clustering-based approach. The hyperparameters used both for training the projections and for

clustering with k-means are shown in Table C.4.

HYPERPARAM. VALUE

Projection dim. r 4
Loss margin ω 1.0
Batch size 16
Optimizer Adam
Number of epochs 1
Learning rate 0.01
ℓ2 regularization 0
k-means init k-means++
k-means max num. inits 10
k-means max iters 300

Table C.4: Hyperparmeters for MT projections.

Projection analysis. We compare Sparsefinder, varying B ∈ {2, 4, 6, 8, 10, 12} for bucket-based methods,

and t ∈ {0.5, 1.0, 1.5, 2.0, 2.5} for the distance-based variant, with the following methods:

• Window baseline: connect all query and key pairs within a sliding window of size w ∈ {0, 1, 3, 5, 7, 9,

11, 15, 19, 23, 27}.

• Learnable patterns: Reformer by varying the number of buckets within {2, 4, 6, 8, 10, 12}; Routing

transformer by varying the number of clusters within c ∈ {2, 4, 6, 8, 10} with top-k set to ⌈n/c⌉ (i.e.

balanced clusters).

• Fixed patterns: BigBird by varying the number of random blocks within {2, 4, 6, 8, 10} with a block

size of 1; Longformer by varying the number of random global tokens within {4, 8, 12, 16, 20}.

Sparsity-recall tradeoff per layer and head (EN→DE). Plots are shown in Figures C.1, C.2.

Figure C.1: Sparsity-recall tradeoffs without a fixed window pattern for EN→DE.

Sparsity-recall tradeoff per layer and head (EN→FR). Plots are shown in Figures C.3, C.4.



Figure C.2: Sparsity-recall tradeoffs with a fixed window pattern of size 11 for EN→DE.

Figure C.3: Sparsity-recall tradeoffs without a fixed window pattern for EN→FR.

Figure C.4: Sparsity-recall tradeoffs with a fixed window pattern of size 11 for EN→FR.

C.2 Masked Language Modelling

C.2.1 Setup

Data and model. In order to have a transformer model trained with α-entmax, we finetuned RoBERTa-

Base (Liu et al., 2019) on WikiText-103 (Merity et al., 2017) over 3000 steps with Adam (learning rate of



3 × 10−5). To mimic the finetuning approach adopted by Longformer, we employed a batch size of 2 by

accumulating gradients over 32 steps due to GPU memory constraints. At the end of training we obtained a

perplexity of 1.2529 with an overall sparsity of 0.9804. Table C.5 shows some architecture (transformer large)

and training hyperparameters used for MT experiments. We refer to the original work of Liu et al. (2019) for

more architecture details.

HYPERPARAM. VALUE

Hidden size 64
Feedforward size 3072
Max input length 514
Number of layers 12
Number of heads 12
Attention mapping π 1.5-entmax
Optimizer Adam
Number of steps 3000
Learning rate 0.00003

Table C.5: Hyperparmeters for masked language modelling models.

C.2.2 Projections setup

Data and training. The subset used for Masked LM projections experiments contains 500 instances for train-

ing and 500 instances for validation. Moreover, all instances have a sentence length of 512 tokens. We got 3M

(±1M) positive pairs for training and 2.5M (±1M) for validation. The hyperparameters for Masked LM are the

same as the ones used in the MT experiments, shown in Table C.4.

Projection analysis. We perform the same analysis as in MT, but now we vary the window size of the baseline

within {0, 1, 3, 7, 11, 25, 31, 41, 51, 75, 101, 125, 151, 175, 201, 251, 301, 351, 401, 451, 501, 512}.

Sparsity-recall tradeoff per layer and head. Plots are shown next.

Figure C.5: Sparsity-recall tradeoffs without a fixed window pattern for MLM.



Figure C.6: Sparsity-recall tradeoffs with a fixed window pattern of size 25 for MLM.

C.3 Attention plots

Examples of attention maps can be seen in Figure C.7 and C.8.

Figure C.7: Learned patterns by Sparsefinder k-means (left) and the subsequent attention weights (right). Starred blocks
represent ground-truth edges.

C.4 Efficient Sparsefinder

Plots for block size within {1,2,4,8,16} are shown in C.9. For these experiments, we used a window size of

3 for all methods in order to better measure the impact of others hyper-parameters.



Figure C.8: Learned patterns by Sparsefinder k-means (left) and the subsequent attention weights (right). Starred blocks
represent ground-truth edges.
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Figure C.9: Comparison between Sparsefinder and BigBird in terms of running time and (negative) perplexity as a function
of the number of random blocks for several block sizes. The horizontal dashed line represents the results obtained by the
full α-entmax transformer.
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D.1 Training hyperparameters

The hyperparameters used for training are shown in Table D.1.

HYPERPARAM. XLM-R XLM-R-M REMBERT

Feed-forward size 1024 1024 1024
Batch size 2 2 1
Optimizer Adam Adam Adam
Number of epochs 10 10 10
Early stopping patience 3 3 3
Encoder learning rate 1× 10−4 1× 10−4 3× 10−5

Feed-forward learning rate 1× 10−4 1× 10−4 1× 10−5

Gradient accumulation 4 4 8
Dropout 0.05 0.05 0.05

Table D.1: Hyperparmeters used for training sentence (constrained) and word-level (unconstrained) QE systems.

D.2 Full results for the constrained track

Following the analysis described in §6.5.1, we report the best results for each explainability method for

XLM-R-based models in Table D.2 on the validation set of RO-EN and Table D.3 on the validation set of ET-EN.

We also report the best explainers based on Attention × Norm for XLM-R-M and RemBERT-based models.

For explainability methods based on attention weights, we show two attention heads: one with the best perfor-

mance on source AUC and another with the best performance on target AUC. Besides submitting ensembled

explanations, we also made submissions with Attention × Norm heads that achieve the top performance on the

validation set of RO-EN and ET-EN.

Source Target

# ENCODER EXPLAINER AUC AP R@K AUC AP R@K

1 XLM-R Attention - Layer 18 - Head 3 0.6555 0.4569 0.3509 0.7894 0.7189 0.6054
2 XLM-R Attention - Layer 18 - Head 0 0.7445 0.6353 0.5164 0.7462 0.6488 0.5197
3 XLM-R Cross-attention - Layer 18 - Head 3 0.7092 0.5461 0.4139 0.8066 0.7378 0.6293
4 XLM-R Cross-attention - Layer 18 - Head 0 0.7514 0.6345 0.5170 0.7374 0.6254 0.4883
5 XLM-R Attention × Norm - Layer 18 - Head 3 0.7178 0.5686 0.4372 0.8136 0.7432 0.6342
6 XLM-R Attention × Norm - Layer 19 - Head 2 0.7851 0.6875 0.5701 0.8099 0.7301 0.6153
7 XLM-R Gradient × Hidden States - Layer 15 0.6949 0.5629 0.4399 0.6780 0.5388 0.4044
8 XLM-R Gradient × Attention - Layer 17 0.7104 0.5942 0.4913 0.7618 0.6747 0.5628
9 XLM-R Integrated Gradients - Layer 15 0.6539 0.5251 0.4059 0.6560 0.5148 0.3853

10 XLM-R LIME 0.6470 0.5160 0.3922 0.5892 0.4576 0.3300
11 XLM-R Leave-one-out 0.6970 0.5673 0.4409 0.5921 0.4752 0.3567
12 XLM-R Relaxed-Bernoulli Rationalizer 0.4803 0.3638 0.2483 0.5434 0.4043 0.2914
13 XLM-R-M Attention × Norm - Layer 23 - Head 3 0.6993 0.5824 0.4571 0.7686 0.6932 0.5932
14 XLM-R-M Attention × Norm - Layer 23 - Head 1 0.7530 0.6612 0.5479 0.7612 0.6841 0.5802
15 RemBERT Attention × Norm - Layer 23 0.7824 0.6987 0.5901 0.7904 0.6865 0.5723
16 RemBERT Attention × Norm - Layer 22 - Head 5 0.7842 0.6822 0.5752 0.7167 0.5549 0.4278

1 Ensemble (5) + (6) + (15) 0.8043 0.7137 0.5970 0.8398 0.7695 0.6606
2 Ensemble (5) + (6) + (14) + (15) 0.8074 0.7203 0.6071 0.8421 0.7725 0.6624

Table D.2: Full constrained track results on the validation set of RO-EN.



Source Target

# ENCODER EXPLAINER AUC AP R@K AUC AP R@K

1 XLM-R Attention - Layer 18 - Head 3 0.6406 0.5205 0.3811 0.7094 0.6210 0.5037
2 XLM-R Attention - Layer 18 - Head 0 0.6656 0.5619 0.4438 0.7055 0.6011 0.4779
3 XLM-R Cross-attention - Layer 18 - Head 3 0.6587 0.5335 0.3947 0.7270 0.6396 0.5226
4 XLM-R Cross-attention - Layer 17 - Head 13 0.7090 0.5927 0.4673 0.6788 0.5760 0.4599
5 XLM-R Attention × Norm - Layer 18 - Head 3 0.6697 0.5540 0.4228 0.7257 0.6373 0.5200
6 XLM-R Attention × Norm - Layer 19 - Head 2 0.7335 0.6181 0.4857 0.7404 0.6477 0.5303
7 XLM-R Gradient × Hidden States - Layer 14 0.6567 0.5403 0.4156 0.6041 0.4837 0.3619
8 XLM-R Gradient × Attention - Layer 17 0.6613 0.5597 0.4322 0.6891 0.5983 0.4798
9 XLM-R Integrated Gradients - Layer 15 0.6194 0.4995 0.3699 0.5705 0.4649 0.3489

10 XLM-R LIME 0.6221 0.4968 0.3606 0.5405 0.4297 0.3222
11 XLM-R Leave-one-out 0.6584 0.5375 0.4082 0.5493 0.4494 0.3412
12 XLM-R Relaxed-Bernoulli Rationalizer 0.4933 0.3794 0.2481 0.5406 0.4277 0.3211
13 XLM-R-M Attention × Norm - Layer 21 - Head 8 0.6235 0.5041 0.3670 0.7122 0.6254 0.5133
14 XLM-R-M Attention × Norm - Layer 21 - Head 9 0.5510 0.4106 0.2738 0.7068 0.6175 0.5059
15 RemBERT Attention × Norm - Layer 23 0.7465 0.6382 0.5229 0.7085 0.5954 0.4756
16 RemBERT Attention × Norm - Layer 23 - Head 8 0.7501 0.6203 0.4912 0.6758 0.5486 0.4418

1 Ensemble (5) + (6) + (15) 0.7467 0.6368 0.5113 0.7545 0.6662 0.5512
2 Ensemble (5) + (6) + (14) + (15) 0.7441 0.6366 0.5089 0.7639 0.6805 0.5688

Table D.3: Full constrained track results on the validation set of ET-EN.
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E.1 Data Information

The data used for finetuning our QE systems is shown in Table E.1. For DA data, we split the original

development set to generate a new dev/test split, therefore the reported numbers in the table correspond to this

“internal” dev split.

Source Target Target
LP Samples Tokens Tokens OK / BAD

TRAIN

en-de 9000 147870 153656 0.84 / 0.16
en-mr 26000 690516 561371 0.90 / 0.10
en-zh 9000 148657 163308 0.65 / 0.35
et-en 9000 126877 185491 0.75 / 0.25
ne-en 9000 135205 181707 0.41 / 0.59
ro-en 9000 154538 167471 0.71 / 0.29
ru-en 9000 104423 132006 0.85 / 0.15
si-en 9000 141283 166914 0.42 / 0.58
en-de† 54681 1571090 1926444 0.90 / 0.10
en-ru† 15628 312185 354871 0.95 / 0.05
zh-en† 75327 134165 2789907 0.87 / 0.13

DEV

en-de 500 8262 8555 0.84 / 0.16
en-mr 500 13803 11216 0.91 / 0.09
en-zh 500 8422 9302 0.75 / 0.25
et-en 500 7081 10257 0.73 / 0.27
ne-en 500 7542 10247 0.38 / 0.62
ro-en 500 8550 9202 0.78 / 0.22
ru-en 500 5984 7511 0.84 / 0.16
si-en 500 7866 9415 0.41 / 0.59
en-cs 500 10302 9302 0.75 / 0.25
en-ja 500 10354 13287 0.73 / 0.27
km-en 495 9015 8843 0.45 / 0.55
ps-en 500 13463 12160 0.51 / 0.49
en-de† 503 10535 12454 0.96 / 0.04
en-ru† 503 10767 11911 0.91 / 0.09
zh-en† 509 980 19192 0.98 / 0.02

Table E.1: DA and MQM (†) data for all LPs.
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F.1 Explainer Details

With the integrated gradients explainer (Sundararajan et al., 2017), we use 10 iterations for the integral

in the simulability experiments (due to the computation costs) and 50 iterations for the plausability experi-

ments. We use zero vectors as baseline embeddings, since we found little variation in changing this. For both

gradients-based explainers, we project into the simplex by using the softmax function, similar to the attention-

based explainers. This results in very negative values having low probability values. Moreover, for evaluating

plausibility on translation quality estimation, we followed Treviso et al. (2021) and computed the explanation

score of a single word by summing the scores of its word pieces.

We would like to note that, unlike the setting in Pruthi et al. (2022), we do not apply a top-k post-processing

heuristic on gradients/attention logits, instead directly projecting them to the simplex. This might explain the

difference in results to the original paper, particularly for the low simulability performance of static explainers.
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